AMERICAN

 PIDay

 PIDay A celebration or , \% A celebration or , \% Mathematics kut Mathematics kut

AMERICAN
 Scientist Special Collection

3 From the Editors
Fenella Saunders, Editor-in-Chief

Columns

$4 \quad$ Pencil, Paper, and Pi
A gargantuan calculation of pi in the 1850s ran up against the limits of manual arithmetic; figuring out where it went wrong calls for forensic mathematics. Brian Hayes
8 A Tisket, a Tasket, an Apollonian Gasket Fractals made of circles do funny things to mathematicians
Dana Mackenzie Dana Mackenzie
13 A Helix with a Handle
Mathematicians prove the existence of a new class of minimal surfaces.
The
14 The Bootstrap
Statisticians can reuse their data to quantify the uncertainty of complex models.
9 First Person: Tim Davis Building mathematical monkey wre Robert Frederick
22 Recreational Computing Puzzes and tricks from Martin Gardner inspire math and science Erik D. Demaine
28 Science Needs More Moneyball Baseball s data-mining methods are starting a similar revolution in research.

Ode to Prime Numbers
Primes offer poetry both subject matter and structure.
h Glaz
37 The Music of Math Games
Video games that provide good mathematics learning should look to the piano as a model.
Slide Rules: Gone But Not Forgotte
Many of these well-made mechanical calculating aids have outlasted the engineers who knew how to us Henry Petroski

Features

46 In Defense of Pure Mathematics After 75 years, Godfrey Harolds Hardy's A Mathematician's Apology still fuels debate over pure versus applied mathematic
Daniel S. Silver
54 Slicing Sandwiches, States, and Solar Systems Can mathematical tools help determine what divisions are provably fair?
Theodore P Hill Theodore P. Hill
62 Twisted Math and Beautiful Geometry
Four families of equations expose the hidden aesthetic of bicycle wheels, falling bodies, rhythmic planets, and mathematics itself.
Eli Maor, Eugen Jost

Scientist's Nightstand

68 Stats and Fiction
Katie Burke
Information, Reimagined
Daniel S. Silver
Math with Attitude
Brian Hayes

page 4

page 22

page 54

Cover Illustration Credit
Cover image created by Francisco J. Aragon Artacho under the super-
vision of Jonathan M. Borvein at CARMA (Centre for Corvein a Assisted Research Mathematics an Assisted Research Mathematics and
its Applications) of the University of Newcastle, Australia

Welcome to American Scientist!

Oh my, here come pi!
three-point-one-four-one-five
The constant we all know, the famous ratio
Oh my, here come pi!
How many can you memorize?
It goes on and on, a never-ending song.
Hey, hey, it's pi day!
Make a circle, celebrate
Irrational action, that can't be expressed as a simple fraction!
Pi!

T
This catchy ditty, sung by kids taking a bus ride to math camp in the 2019 movie Wonder Park, shows how pi has become the most 1 famous star of the math world, and also captures some of the fun associated with Pi Day. For those who are not math enthusiasts, the collection, pi and its math pat be be collection, pi and its mathematical brethren have long been used in games and even in art.

Pi Day, recognized by the U.S. House of Representatives in 2009, is celebrated on March 14, because in the month-day format 3-14, that date calls to mind the usual abbreviated form of pi, 3.14. The idea for Pi Day is attributed to the late physicist Larry Shaw of the Exploratorium in San Francisco, who organized the first celebration in 1988; it involved prodigious pie-eating and large parades of people marching in circles while holding up signs depicting the digits of pi.

Pi is a ubiquitous constant: For any circle, its circumference divided by its diameter will be pi. This property has been known for millennia, and later the use of the lowercase Greek letter π came into play as an abbreviation of the Greek word periféreia, meaning circumference. However, the use of the Greek letter to designate the constant itself only became popular with the work of Swiss mathematician Leonhard Euler in the mid-1700s.

Pi remains something of a mystery-is there ever any pattern to its endless digits? To better visualize the huge data set created by the digits of pi, mathematician Francisco J. Aragón Artacho of the University of Newcastle in Australia and his colleagues created a computerized image to measure its randomness (shown digits were represented as 0 and his colleagues converted the first 100 billion digits of pi into base 4, so all four numbers dicented the 1 , 2 , or 3 , and "walk" in becime (epin a 1 , inl naice pore back close to where it started. But the randomness of the picture of the walk provides visual support for the conjecture that the digits of pi may be random.

Pi is famous for its geometrical roots, but its use extends into many branches of math and physics that have nothing to do with circles. This collection begins with a history of the calculation of pi, but then we broaden out to include discussions of such topics as the beautiful aspects of geometrical forms, ways that statistics has benefited science, and the reasons we should defend so-called pure mathematics, other topics. And there's a lot more math content that we could not fit into this collection, so check out the American Scientist website for a special listing of other math articles of interest

We hope that reading this collection will inspire you to delve further into pi and other math topics. Maybe you'll be inspired to have a Pi Day celebration of your own!

Fenella Saunders
Editor-in-Chief

Pencil, Paper, and Pi

A gargantuan calculation of π in the 1850 s ran up against the limits of manual arithmetic; figuring out where it went wrong calls for forensic mathematics.

Brian Hayes

William Shanks was one of the finest computers of the Victorian eraenoted not a machine but a person skilled in arithmetic. His specialty was mathematical constants, and his most ambitious project was a record-setting computation of π. Starting in 1850 and more than 20 years, he eventually published a value of π that began with the familiar digits 3.14159 and went on for 707 decimal places.
Seen from a 21 st-century perspective Shanks is a poignant figure. All his patient toil has been reduced to triviality. Anyone with a laptop can compute hundreds of digits of π in microseconds Moreover, the laptop will give the correct digits. Shanks made a series of mis 530 that spoiled the rest of his work
I have long been curious about Shanks and his 707 digits. Who was this prodigious human computer? What led him to undertake his quixotic advenures in arithmetic? How did he deal with the logistical challenges of the π computation: the teetering columns of figures, the grueling bouts of multiplication and division? And what wen wrong in the late stages of the work? would be to buy several reams of paper, sharpen a dozen pencils, and try to retrace Shanks's steps. I haven't the stamina for that-or even the life expectancy. But by adapting some pencildriven algorithms to run on silicon
computers, I have gotten a glimpse of what the process might have been like for Shanks. I think I also know where a couple of his errors crept in, but the

Scanty Intervals of Leisure

 Biographical details about William Shanks are hard to come by. It'sknown that he was born in 1812 . ried in 1846, and died in 1882. He came from Corsenside, a village in the northeast of England, near the Scottish border. After his marriage he lived in Houghton-le-Spring, another small northeastern town, where he ran a boarding school.
Some sources identify Shanks as a student of William Rutherford, a mathematician who taught at the Royal Military Academy and also dabbled in π calculaRutherford but this was not the relationship of a graduate student with a thesis advisor. When Shanks published a small book on π in 1853, he dedicated it to Rutherford, "from whom I received my earliest lessons in numbers." It turns out that Rutherford taught at a school not far from Corsenside in the 1820s. Shanks was then a boy of 10 or 12 , and he must have been one of Rutherford's pupils. I have not been able to learn anything is no mention of a university degree Rutherford remained a mentor and became a collaborator. The two men crosschecked their calculations of π and published some of the results jointly.
The available evidence suggests tha Shanks was an amateur and a marginal figure in the mathematical community, but not a crank. He published 15 papers in the Proceedings of the Royal Society. Although he was never a member, he
apparently had no trouble persuading Fellows to submit manuscripts on his behalf. These sponsors-some of whom were also listed as subscribers to his 1853 book-included prominent figures in British science and mathematics: George Stokes, George B. Airy, William Whewell, Augustus De Morgan. Pencil-and-paper computation was tury than it is today. Even then cen ever, grinding out 707 decimal places of π was more of a stunt than a contribution to mathematical research. Shanks seems to have understood the borderline status of his project. The book he wrote about his calculations begins:
Towards the close of the year 1850 The Author first formed the design of rectifying the Circle to upwards of 300 places of decimals. He was fully aware, at that time, that the accomplishment of his purpose would add little or nothing to his fame as a Mathematician, though it might as a Computer; nor would it be productive of anything in the
shape of pecuniary recompense at all adequate to the labour of such lengthy computations. He wa anxious to fill up scanty intervals of leisure with the achievemen of something original, and which at the same time, should not subject him either to great tension of thought, or to consult books
He was surely right about the limited payoff in fame and funds. I hope he maged to avoid tension of thought.

The Recipe for P

There are countless ways of computing π, but almost all 19th-century calcula tors chose arctangent formulas. These

The digits of π are encoded in ribbons of color. (The mapping of digits to colors is given in the key at right.) The upper band shows 707 correct decimal places of π; below are the digits
methods begin with a geometric ob servation about a circle with radius 1 and circumference 2π. As shown in the diagram below, an angle drawn at the along the circumference and a right triangle with sides a, b, and c. The arctangent function relates the length of side b (the "side opposite" the angle) to the length of the arc. In particular, when 6 has length 1 , the arc is one-eighth of the circumference, which is equal to $\pi / 4$. The equation $\arctan 1=\pi / 4$ is the key to computing π. If you can assign a numerical value to arctan 1 , you get an approximation to $\pi / 4$, multiply this The next question is how to compute an arctangent. The pioneers of calculus devised an infinite series that gives the value of arctan x for any value of x between -1 and +1
$\arctan x=\frac{x^{1}}{1}-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7}+$
For the case of $x=1$, the series assumes a particularly simple form
$\arctan 1=\frac{1}{1}-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+$.
Hence to calculate π one can just add up the terms of this series-the reciprocals of successive odd numbers, with alternating plus and minus signs-until the sum attains the desired accuracy.
Lamentably, this plan won't work. At $x=1$ the arctan series converges at an agonizingly slow pace. To get n digits of the series. Shanks would have had to evaluate more than 10^{700} terms, which is beyond the means of even the most intrepid Victorian scribbler.
All is not lost. For values of x closer to zero, the arctan series converges more quickly. The trick, then, is to combine multiple arctan calculations that sum up to the same value as arc$\tan 1$. Shanks worked with the follow-

ing formula, discovered in 1706 by the

$\frac{\pi}{4}=4 \arctan \frac{1}{5}-\arctan \frac{1}{2}$
He had to evaluate two arctan series rather than just one, but both of these eries converge much faster.
The upper illustration on page 344 traces the evaluation of the first three terms of the series for arctan $1 / 5$ and arctan 1/239, retaining five decimal places of precision. The error in the computed value of π is 0.00007 . No extraordinary skill in arithmetic is needed to carry imagine scaling it up to several hundred terms and several hundred decimal places. The basic operations remain the same, but keeping all the figures straight becomes a clerical nightmare.
In computing arctan $1 / 5$, Shanks evaluated 506 terms, each carried to 709 decimal places. Most likely he performed separate summations of the positive and negative terms. If he
tried to write down such an adition tried to write down such an addition prob-digit numbers, or almost 180,000 digits in all-it would fill a sheet of paper two meters wide by a meter high. per two meters wide by a meter high. pieces makes it less awkward physically but entails other costs: extra copying of intermediate results, transferring carry digits, the risk of misaligning columns or rows.
Erwin Engert, a Shanks enthusiast, has tested the travails of pencil-andpaper calculation by doing 20-digit
and 40-digit evaluations of Machin's arctan formula. The results are on his website at http://engert.us/erwin/ Miscellaneous.html. The challenge of keeping digits aligned became severe enough that Engert printed ruled forms for the larger computation. Shanks may well have done the same, although we have no direct evidence.

0123456789

Pencil-Friendly Algorithms

In silico, summing n terms of the series
for arctan x takes just a few lines of code: function $\arctan (x, n)$
sum $=0$
for k from 0 to $n-1$
sign $=(-1)^{k}$
$m=2 \times k+1$
$m=2 \times k+1$
term $=\operatorname{sign} \times x^{m} / m$
return sum
For each integer k from 0 to $n-1$, the program generates an odd integer m and the corresponding term of the arctan series, x / m. The expression (-1) k, minus for odd. When the loop com pletes, the function returns the accumulated sum of the n terms. The only hidden subtlety here is that the numeric variables must be able to accommodate numbers of arbitrary size and precision No one doing arithmetic with a pen il would adopt an algorithm anything like this one. After every pass through the loop, the program throws away

$x=45$ degrees $=\frac{\pi}{4}$ radians
$a=b=r=1$
$\tan \frac{\pi}{4}=\frac{b}{a}=1$
$\arctan 1=\frac{\pi}{4}$

The pie slice that helps determine the value of grees, or $\pi / 4$ radians. The tangent of this angle defined as the ratio b / a in the red triangle, is qual to 1 . Hence, computing the arctangent of yields a numerical value for $\pi / 4$.

A crude computation of π proceeds by summing the first three terms in an infinite series for arctan $1 / 5$ and arctan $1 / 239$. Each term is evaluated to five decimal places. Plugging these val-
all its work except the variables k and sum, then starts from scratch to build the next term of the series. A manual worker would surely save the value
of x^{m} as a starting point for calculating the next power, x^{m+2}. And exponentiating -1 is not how a human computer would keep track of alternating signs. It's not hard to transform the pro gram into a more pencil-friendly procedure, avoiding needless recomputation and saving intermediate results for future use. Moreover, the computer can be programmed to use digit-by-digit algorithms-the ones we all learned after-for multiplication and long division. But these alterations still fail to capture some important practices of a shrewd human reckoner.
Most of the terms in the series for $\arctan 1 / 5$ are repeating decimals with a short period. For example, the term $(1 / 5)^{9} / 9$ works out to 0.000000056888 A naive computer program would go on dividing digit after digit out to the limit of precision, but
in a string of 8s.
There are also peculiarities of base 10 to be taken into account. For generating the sequence of odd powers of $1 / 5$, the basic step is dividing by 25 . Engert suggests dividing by 100 (a shift of the decimal point) and multiplying by ${ }^{m}$. Another option is to calculate
$(1 / 5)^{m}$ as $2^{m} / 10^{m}$ (where again divi$(1 / 5)^{m}$ as $2^{m} / 10^{m}$ (where again division by a power of 10 is just a decimalpoint shift). I mention this latter pos(under Rutherford's byline) inclucle

530 decimal places; 440 of those fig ures were confirmed by Rutherford and the rest were also correct apar from a few typographical errors and a iscrepancy in the last two digits tha ring of 1853 Shan ended his calculation from 530 to 607 decimal places, publishing these re sults in a privately printed book, Contributions to Mathematics, Comprising Chiefly the Rectification of the Circle to 607 Places of Decimals. This is where the errors creep in. His value of arctan $1 / 5$ goes awry in the 530th decimal place right on the boundary between the old rctan $1 / 5$ is multiplied by 16 in the Machin formula the error propagates back to the 528th decimal place in the value of π. Shanks's sum for arctan $1 / 239$ is also incorrect, starting at the 592nd decimal place
After bringing out his book, Shank put π aside for 20 years. When he took up the task again in 1873, he extended he two arctan series to 709 decima places and π to 707 . Because these comparlier work they were doomed from he start. The errors weren't noticed until 75 years later, when D. F. Fergu son, working with a mechanical desk calculator, extended a new calculation of π beyond 700 digits.
Trying to discover where Shanks went wrong is an interesting exercis in forensic mathematics. Usually, one strives to find the correct answer to a problem; here the aim is to get the answer We want to take a correct val ue and find some way of modifying it that will yield the specific erroneou output reported by Shanks. It's like searching for a suspicious transaction when your checkbook disagrees with the bank statement, except that w have no access to the individual check book entries, only the final balance
To search for an error in the arcta
arctan $1 / 52438302697560518377574220877835853152464749330914587633823112490332030126805100670223312575050942448$ term 2482438302697560518377617781642423378303370181926488028277686291564778710207287998054529147585111304621 term 72 2438302697560518377617781642423378303370181926488028277686119150985606759012135985563630343731994276 Shanks 53243830269756051837761778164242337830337018192648802827768611915098560675901213598556363034347839926 Forensic analysis correct value of arctan $1 / 5$ (top) into the erroneous values published by Shanks (bottom). Omitting a 0 at position 530 in term 248 "uncorrects" 39 digits (yellow band). A five-digit omission in term 72 leads
to a match with another 33 digits of the Shanks value (orange bana). Further errors remain, but the situation is confusing; the final eigh
digits of a 609 -place computation from 1853 were changed without digits of a 609 -place computation from 1853 were changed without
explanation when Shanks returned to the task in 1873 .
the true value and Shanks's value, the obtracted this discrepancy from each cases the result was uninfer. hiv my eye was drawn to this pattem, the 248th term:

T: 7444668008048289738430583501
S: 7444668008483897384305835010
Sequence T comes from the true arcta um, starting at decimal place 520 ; se quence S is the same region after sub racting the discrepancy. In the first 10 positions the two numbers agree, but hereafter S is a shifted version of T, cre nd letting the rest 0 marked in red ne place (There's also a substitution ew digits later, where a 2 becomes a 3 , Without further documentary evidence, it's not possible to prove that this spot marks the site of Shanks's first error, but it's certainly a plausible hy pothesis. When Shanks extended this term from 530 digits to 609 , he didn' need to do any actual arithmetic. The term is a repeating decimal with a pe-
riod of 210 digits, so he merely needed o copy a segment from earlier in the equence. It seems likely that he missed that 0 digit while copying. I was not the first to discover this error; Erwin Engert identified it before I did
If you inject this one-digit shift error into the arctan calculation, the output matches the Shanks value in the regio following decimal place 530, but the agreement does not continue all the way to the don. At decimal place 569 dently there's another mistak
I wasn't the first to notice this p
I wasn't the first to notice this prob tention to an anomaly in term 72 an suggested that Shanks had omitted all he digits of this term from position 569 n. I believe that Ferguson correctly dentified the trouble spot, but his d agnosis is not quite right. Truncating term 72 in this way does not transfor he correct sum into the Shanks value mitting five digits at position 569 and shifting the rest of the term to the left. With these two "uncorrections," an transform the true value of arctan $1 / 5$ into the Shanks value through decinal place 601. At that point there must be yet another error, but the situatio is confusing. The last eight digits of th 609-place value published in 1853 diffe from the corresponding digits listed in 1873. I have not found a simple erro
that yields either version. The error in It' $1 / 239$ also remains unexplained. It's curious that Shanks produced alat least four mistakes in the next 80 digits. All four errors date from March or April of 1853 , and they seem to be clerical rather than mathematical. I can only speculate on the cause of this sudden spate of carelessness. Perhaps Shanks was hurrying to get his book into the hands of the subscribers. Or maybe, at age 41 , he was experiencing the early symptoms of presbyopia
Stories about Shanks tend to focus
on the mistakes. We look back with pity
and horror on all those pages of me ticulous arithmetic rendered worthles by a slip of the pencil. But I would ar gue that even with the errors, Shanks's deavor. His 527 correct digits were not bettered for almost a century Augustus De Morgan, one of the leading math ematicians of the era, had his doubts about Shanks's work, but he also spoke admiringly of the power to calculate, ... the courage to face the labour."
For further material on Shanks, including references and programs for exploring his com

© ()
 Scientist

Look for other subscriber-exclusive article collections on americanscientist.org!

A Tisket, a Tasket, an Apollonian Gasket

Dana Mackenzie

$\int_{\mathrm{No}}^{\mathrm{N}} \mathrm{m}$N THE SPRING of 2007 I had the good fortune to spend a semester Institute in Berkeley, an institution of higher learning that takes "higher" to a whole new extreme. Perched precaria whole new extreme. Perched precarisity of California at Berkeley campus, the building offers postcard-perfect vistas of the San Francisco Bay, 1,200 feet below. That's on the west side. Rather sensibly, the institute assigned me an office on the east side, with a view of nothing much but my comhave gotten any work done.
However, there was one flaw in the plan: Someone installed a screen-saver program on the computer. Of course, it had to be mathematical. The program drew an endless assortment of fractals of varying shapes and ingenuity. Every couple minutes the screen would go blank and refresh itself with a completely different fractal. I have to confess that I spent a few idle minutes
fractals instead of writing.
One day, a new design popped up on the screen (see the first figure). It was different from all the other fractals. It was made up of simple shapes-circles, in fact-and unlike all the other screen-savers, it had numbers! My attention was immediately drawn to the sequence of numbers running along the bottom edge: $1,4,9,16$ They were the perfect squares! Th

Dana Mackenzie received his doctorate in mathcmatics from Princeton University in 1983 and taught at Duke University and Kenyon College Since 1996 he has been a freelance writer special izing in math and science, and he has frequently
edited articles on mathematical topics for American Scientist. His published books include The Big Splat, or How Our Moon Came to Be (Wiley, 2003), and volumes 6 and 7 of What's Happening in the Mathematical Sciences (American Mathematical Society, 2007 and 2009). Email: scribe@
danamackenzie.com ple. Researchers at AT\&T Labs printed

Pi Day: A Celebration of Mathematics (original publication January-February 2010)

Apollonius" became a great challenge In 1643, in a letter to Princess Elizabeth
of Bohemia, the French philosopher and mathematician René Descartes correctly stated (but incorrectly proved) a beautiful formula concerning the radii of four mutually touching circles. If the radii are r, s, t and u, then Descartes's formula looks like this:
$1 / r^{2}+1 / s^{2}+1 / r^{2}+1 / u^{2}=1 / 2(1 / r+1 / s+1 / t+1 / u)^{2}$.
All of these reciprocals look a little bit extravagant, so the formula is usuof the curvatures or the bends of the circles. The curvature is simply defined as the reciprocal of the radius. Thus, if the curvatures are denoted by a, b, c and d, then Descartes's formula reads as follows:

$$
a^{2}+b^{2}+c^{2}+d^{2}=(a+b+c+d)^{2} / 2
$$

As the third figure shows, Des cartes's formula greatly simplifies the task of finding the size of the fourth three are known. It is much less obvi ous that the very same equation can be used to compute the location of the fourth circle as well, and thus completely solve the drawing problem. This fact was discovered in the late

Numbers in an Apollonian gasket correspond to the curvatures or "bends" of the circles, with larger bends corresponding to smaller circles. The entire gasket is determined by the first fou mutually tangent circles; in this case, two circles with bend 1 and two "circles" with bend 0 (and therefore infinite radius). The circles with a bend of zero look, of course, like straigh lines. (Image courtesy of Alex Kontorovich.)

1990s by Allan Wilks and Colin Mallows of AT\&T Labs, and Wilks used it to write a very efficient computer program for plotting Apollonian gasdoor and eventually got made into the aforementioned T-shirt.
Descartes himself could not have
discovered this procedure, because it involves treating the coordinates of
he circle centers as complex num ers. Imaginary and complex num ers were not widely accepted by half after Descartes died half after Descartes died.

In spite of its relative simplicity, Descartes's formula has never become widely known, even among mathema icians. Thus, it has been rediscovered over and over through the years. In Ja-

An Apollonian gasket is built up throug successive "generations." For instance, i generation 1 (top left), each of the red ci
cles is inscribed in one of the four triangul pores formed by the black circles. The final gasket shown here, whimsically name bugeye by Katherine Sanden, an unde Graduate student of Peter Sarnak at Princeto largest circle that encloses the rest), 2, 2 and 3. The list of bends that appears in a give gasket (here, 2, 3, 6, 11, etc.) form a number sequence whose properties Sarnak would like to explain-but, he says, "the necessary age courtesy of Katherine Sanden.)
pan, during the Edo period, a delight ful tradition arose of posting beautithat were hung in Buddhist or Shinto temples, perhaps as an offering to the temples, perhaps as an offering to the
gods. One of these "Japanese temple problems," or sangaku, is to find the radius of a circle that just touches two circles and a line, which are themselves mutually tangent. This is a restricted version of the Apollonian problem, where one circle has infinite radius (or zero bend). The anonymous author shows that, in this case, $\sqrt{a}+\sqrt{b}=\sqrt{c}$, thagorean theorem. This formula, by the way explains the pattern I saw in
the screensaver. If the first two circles have bends 1 and 1 , then the circle between them will have bend 4 , because
$\sqrt{1}+\sqrt{1}=\sqrt{4}$. The next circle will have $\sqrt{1}+\sqrt{1}=\sqrt{4}$. The next circle will have
bend 9 , because $\sqrt{1}+\sqrt{4}=\sqrt{9}$. Needless bend 9, because $\sqrt{1}+\sqrt{4}=\sqrt{9}$. Needless to say, the pattern continues forever
(This also explains what the numbers in the first figure mean. Each circle is labeled with its own bend.)
Apollonian circles experienced perhaps their most glorious rediscovery in 1936, when the Nobel laureate (in chemistry, not mathematics) Frederick Soddy became mesmerized by their charm. He published in Nature a poetic
version of Descartes' theorem, which he called "The Kiss Precise":

Four circles to the kissing come
The smaller are the benter.
The bend is just the inverse of
The distance from the center
Though their intrigue left
Euclid dumb,
There's now no need for rule
of thumb.
Since zero bend's a dead
straight line,
And concave bends have
minus sign,
The sum of the
The sum of the squares of all four bends

Is hat he square of the sum.
Soddy went on to state a version for three-dimensional spheres (which he was also not the first to discover) in the final stanza of his poem. Ever since Soddy's prosodic effort, it has become something of a tradition to publish any extension of his theorem in poetic form as well. The following year, Thorold Gosset published an n dimensional version, also in Nature.
In 2002, when Wilks, Mallows and Jeff Lagarias published a long article in Lagarias published a long article in
the American Mathematical Monthly, the American Mathematical Monthly, Soddy's poem entitled "The Complex Kiss Precise":

Yet more is true: if all four discs
Are sited in the complex plane,
Then centers over radii
Obey the self-same rule again.
(The authors note that the poem is to be pronounced in the Queen's English.)

A Little Bit of Gasketry

To this point I have only written about the very beginning of the gasketmaking process-how to inscribe one circle among three given circles. However, the most interesting phenomena show up when you look at the gaske as a whole.
The first thing to notice is the foam-
like structure like structure that remains after you cut out all of the discs in the gasket
Clearly the disks themselves take up Clearly the disks themselves take up
an area that approaches 100 percent an area that approaches 100 percen
of the area within the outer disk, and so the area of the foam (known as the "residual set") must be zero. On the other hand, the foam also has infinite length. Thus, in fact, it was one of the first known examples of a fractal-a curve of dimension between 1 and 2 . Even today its dimension (denoted δ) estimate is 1.30568 .

The concept of fractional dimension was popularized by Benoit Mandelbrot in his enormously influential book The
Fractal Geometry of Nature. Although Fractal Geometry of Nature. Although
the meaning of dimension 1.30568 is somewhat opaque, this number is resomewhat opaque, this number is re-
lated to other properties of the foam that have direct physical meaning. For instance, if you pick any cutoff radius r, how many bubbles in the foam have radius larger than r ? The answer, denoted $N(r)$, is roughly proportional to r^{δ}. Or if you pick the n largest bubbles, what is the remaining pore space between those bubbles? The answ
roughly proportional to $n^{1-2 / /}$.
roughly proportional to n
Physicists are very familiar with this sort of rule, which is called a power law. As I read the literature on Apollonian packings, an interesting cultural differmathematicians. In the physics literature, a fractional dimension δ is de facto equivalent to a power law r^{δ}. However, mathematicians look at things through a sharper lens, and they realize that there can be additional, slowly increas-
ing or slowly decreasing terms. For ing or slowly decreasing terms. For
instance, $N(r)$ could be proportional to $r^{\delta} \log (r)$ or $r^{\delta} / \log (r)$. For physicists, who study foams empirically (or semiempirically, via computer simulation), the logarithm terms are absolutely undetectable. The discrepancy they introduce will always be swamped by the noise in any simulation. But for mathematicians, who deal in logical rigor, the logarithm terms are where most of the Kontorovich and Hee Oh of Brown University showed that there are in fact no logarithm terms in $N(r)$. The number of circles of radius greater than r obeys a strict power law, $N(r) \sim \mathrm{Cr}^{\delta}$, the first three circles of the packing. For the "bugeye" packing illustrated in the second figure, C is about 0.201. (The tilde (\sim) means that this is not an equation but an estimate that becomes more creases to 0) For mathematicians, this was a major advance. For physicists, the likely reaction would be, "Didn't we know that already?"

Random Packing

For many physical problems, the classical definition of the Apollonian gasket is too restrictive, and a random model may be more appropriate. A bubble sen location and expand until it hits

Physicists study random Apollonian packings as a model for foams or powders. In these simula tions, new bubbles or grains nucleate in a random place and grow, either with rotation or withou
until the until they encounter another bubble or grain. Different geometries for the bubbles or grains, and dirferent growth rules, lead to different values for the dimension of the residual set-a way
measuring the efficiency of the packing. (Image courtesy of Stefan Hutzler and Gary Delaney.)
an existing bubble, and then stop. Or a tree in a forest may grow until its canopy touches another tree, and then
stop. In this case the new circles not touch three circles at a time, but only one. Computer simulations show that these "random Apollonian packings" still behave like a fractal, but with a different dimension. The empirically observed dimension is 1.56 . and the packing is less efficient than in a deterministic Apollonian gasket.) More recently, Stefan Hutzler of Trinity College Dublin, along with Gary Delaney and Tomaso Aste of the University of Canberra, studied the effect of bubbles with different shapes in a random Apollonian packing. They found, for example, that squares become much more efficient packers than circles if they are allowed to rotate as
they grow, but surprisingly triangles they grow, but surprisingly, triangles
become only slightly more efficient. As far as I know, all of these results are begging for a theoretical explanation. For mathematicians, however, the classical, deterministic Apollonian gasket still offers more than enough challenging problems. Perhaps the most astounding fact about the Apollonian gasket is that if the first four circles have integer bends, then every other circle in the packing does too. If you are lonian gasket, the bend of the fourth is found (as explained above) by solving a quadratic equation. However, every subsequent bend can be found by solving a linear equation:

$$
d+d^{\prime}=2(a+b+c)
$$

For instance, in the "bugeye" gas$b=3$, and $c=15$ are mutually tangent to two other circles. One of them, with bend $d=2$, is already given in the
first generation. The other has bend $d^{\prime}=38$, as predicted by the formula $2=38$, as predicted by the formantly,
$2+38=2(2+3+15)$. More importantly even if we did not know d^{\prime}, we would still be guaranteed that it was an integer, because a, b, c and d are.
Hidden behind this "baby Descartes equation" is an important fact about Apollonian gaskets: They have a very high degree of symmetry. Circles a, b and c actually form a sort of curved mirror
that reflects circle d to circle d^{\prime} and vice versa. Thus the whole gasket is like a kaleidoscopic image of the first four circles, reflected again and again through an infinite collection of curved mirrors. Kontorovich and Oh exploited this symmetry in an extraordinary and amusing way to prove their estimate of the function $N(r)$. Remember that $N(r)$ simply counts how many circles in the
gasket have radius larger than r. Kongasket have radius larger than r. Kon $\mathrm{N}(r)$ by introducing an extra variable of position-roughly equivalent to put-

A favorite example of Sarnak's is the "coins" gaske, so called because three of the four generating circles are in proportion to the siz es of a quarter, nickel and dime, respectivel ${ }_{\text {y }}$.
(Image courtesy of Alex Kontorovich.)

Many variations on the Apollonian gasket construction are possible. In this beautiful example, each pore is occupied by three inscribed circles rather than by one. Light blue arcs rep-
resent five "curved mirrors." Reflections in these curved mirrors-known technically as circle resent five "curved mirrors." Reflections in these curved mirrors-known technically as circle
inversions-create a kaleidoscopic effect. Every circle in the gasket is generated by repeated inversions-create a kaleidoscopic effect. Every circle in the gasket is generated by repeated
inversions of the first six circles through these curved mirrors. (Image courtesy of Jos Leys.)
ting a lightbulb at a point x and asking function was all that Kontorovich and how many circles illuminated by that lightbulb have radius larger than r. The count will fluctuate, depending on exactly where the bulb is placed. But it fluctuates in a very predictable way. For instance, the count is unchanged if you move the bulb to the location of any of its kaleidoscopic reflections.
This property makes the "lightbulb counting function" a very special kind of function, one which is invariant under the same symmetries as the Apollonian a spectrum of similarly symmetric func tions, just as a sound wave can be decomposed into a fundamental frequency and a series of overtones. From this spectrum, you can in theory find out everything you want to know about the lightbulb counting function, including its value at any particular location of the lightbulb. For a musical instrument, the fundamental frequency or lowest overtone is the most important one. Similarly,
it turned out that the first symmetric
function was all that Kontorovich and Oh needed to figure out what happen
to $N(r)$ as r approaches 0 . In this way a simple 0 .
In this way, a simple problem in geometry connects up with some of the
most fundamental concepts of modern mathematics. Functions that have a kaleidoscopic set of symmetries are rare and wonderful. Kontorovich calls them "the Holy Grail of number theory." Such functions were, for instance, used by Andrew Wiles in his proof of Fermat's Last Theorem. An interesting mathematicians happy for years.

Gaskets Galore

 Kontorovich learned about the ApolIonian kaleidoscope from his mentor, Peter Sarnak of Princeton University, who learned about it from Lagarias, who learned about it from Wilks and Mallows. For Sarnak, the Apollonian gasket is wonderful because it has nei-ther too few nor too many mirrors. If ther too few nor too many mirrors. If
there were too few, you would not get
nough information from the spectral decomposition. If there were too many hen previously known methods, such the ones Wiles used, wo Because Apollonian gas
Because Apollonian gaskets fall righ unsolved number-theoretic problems For example, which numbers actually appear as bends in a given gasket? These numbers must satisfy certain "congruence restrictions." For example, in the bugeye gasket, the only legal bends have remainder of $2,3,6$ or 11 when divided by 12. So far, it seems that every numbe does indeed appear in the figure some where. (The reader may find it amusing to hunt for $2,3,6,11,14,15,18,23$, etc. Computation indicates that every num ber occurs, but we can't prove that even percent of them actually occur!" say on Graham of the University of California at San Diego. For other Apolloian gaskets, such as the "coins" gasket in the fifth figure, there are some absen-tees-numbers that obey the congruasket. Sarnak believes, however, that the number of absentees is always finite, and beyond a certain point any number that obeys the congruence restriction does appear somewhere in the gasket. A his point, though, he is far from proving his conjecture-the necessary math jus doesn't exist yet.
And even if all the problems concerning the classic Apollonian gasket re solved, there are still gaskets gaAs mentioned before, they could study random Apollonian gaskets. Another modification is the gasket shown in the last figure, where each pore is filled by hree circles instead of one. Mallows and Gerhard Guettler have shown tha uch gaskets behave similarly to the riginal Apollonian gaskets-if the first six bends are integers, then all the rest of the bends are as well. Ambihe "Descartes formula" and the "baby Descartes formula" for these configura tions, and investigate whether there are congruence restrictions on the bends. Perhaps you, too, will be inspired to write a poem or paint a tablet in honor of Apollonius ingenious legagy. For me what's attractive about Apollonian gas kets is that even my 14 -year-old daugh"Itr finds them interesting," says Sarnak haps a Greek-given problem."

Science Observer

A Helix with a Handle

Mathematicians prove the existence of a new class of minimal surfaces

Dip a loop of wire into a soapy soluion, and the film that covers the loo will be what mathematicians call shape because it minimizes surfach tension. At any point, a minimal sur face is maximally curved in one direction and minimally curved in the opposite direction, but the amount of curvature in each direction is exactly the same. As a result, each point on the surface is either a flat plane or a saddle shape, never a sharp peak or valley But a minimal surface doesn't have to be flat or simple overall: A plane can called a helicoid, which mathematicians proved over two centuries ago s also a minimal surface.
Mathematicians have existence of a class of minimal surfaces that cannot be embodied by soap bubbles but can be visualized by computer simulation. This surface, called a genus-one helicoid, is a variathere is a tunnel through the deck of the parking deck of the parking-ramp spi-
ral. When untwisted, this surface looks like a flat sheet with a coffee-mug-handle shape grafted onto it. "Think of a torus, like an inner tube," says Matthias Weber of Indiana University. "Now imagine that you puncture the torus. This results in a surface that can be the genus-one helicoid I think hat's a real mind bender,"
As they reported in
As they reported in the the Proceedings of the National Academy of Sciences, Weber, David Hoffman of Stanford University and Michael Wolf of Rice University have
proven that such shapes, whethe hey have one or an infinite number of handles, are indeed minimal surfac tions and never fold back to interse themselves.
Over a decade ago, Hoffman with Fusheng Wei, then of the University of Massachusetts at Am herst, and Hermann Karcher of the had created computer simulation of such handled helicoids, but an airtight demonstration of minimal surfacehood eluded them. "Com puter graphics programs enabled couldn't bring them back into the mathematical fold," says Hoffman. "I think the information about how
to solve this problem was lurking in the pictures all the time, but we just had to think about it for a long time and have the theory catch up with can be tence we had." Catching up proof takes up more than 100 pages. An advanced understanding of minimal surfaces could be relevant to materials science; for instance, some compound polymers, such as Kevlar are approximately minimal surfaces, the shape of which can influence the chemical properties of the material.
As mathematicians, Weber and h colleagues are most excited about a potentially large, new class of minimal surfaces that have not been found in nature and which no investigator had imagined could exist until recen ly. "It's easy to come up with one new one is of a very different others that have been found before Weber said. "So it's opened a new field within the theory of minimal surfaces." -Fenella Saunders

Matthias Weber ions without crossing back to intersect itself. The distinct orange and blue colors indicate that the shape a double spira

Computing Science

The Bootstrap

Cosma Shalizi

S
TATISTICS is the branch of applied mathematics that studies ways of drawing inferences from limto know how a neuron in a rat's brain responds when one of its whiskers gets tweaked, or how many rats live in Manhattan, or how high the water will get under the Brooklyn Bridge, or the typical course of daily temperatures in the
city over the year. We have some data city over the year. We have some data
on all of these things, but we know that on all of these things, but we know that
our data are incomplete, and experience our data are incomplete, and experience
tells us that repeating our experiments tells us that repeating our experiments or observations, even taking great care
to replicate the conditions, gives more or less different answers every time. It is foolish to treat any inference from only the data in hand as certain.
If all data sources were totally capricious, there'd be nothing to do beyond piously qualifying every conclusion with "but we could be wrong about this." A mathematical science of statistics is possible because, although repeating an experiment gives different results,
some types of results are more common than others; their relative frequencies are reasonably stable. We can thus model the data-generating mechanism through probability distributions and stochastic processes-random series with some indeterminacy about how the events might evolve over time, although some paths may be more likely than others. When and why we can use stochastic models are very deep questions, but ones for another time. But if we can use them in represented as "parameters" of the stochastic models. In other words, they are functions of the underlying probability

Cosma Shalizi received his Ph.D. in physics from the University of Wisconsin-Madison in 2001. He
is an assistant professor of statistics at Carnegie Mellon Luniversity and an external professor at the Santa Fe Institute. Address: 132 Baker Hall, Carregie Mellon University, 5000 Forbes Avenue, Pitts-
burgh, PA 15213. Internet: htp://vowwobactra.org

Statisticians can reuse their data to quantify

 the uncertainty of complex modelsdistribution. Parameters can be single numbers, such as the total rat popula-
tion; vectors: or even whole curves, tion; vectors; or even whole curves, such as the expected time-course of temperacomes down to estimating those parameters, or testing hypotheses about them.

These estimates and other inferences are functions of the data values, which means that they inherit variability from the underlying stochastic process. If we reran the tape" (as Stephen Jay Gould used to say) of an event that happened, we would get different data with a certain characteristic distribution, and ap-
plying a fixed procedure would yield different inferences, again with a certain distribution. Statisticians want to use this distribution to quantify the uncertainty of the inferences. For instance, by how much would our estimate of a parameter vary, typically, from one replication of the experiment to another-say, to be precise, what is the root-mean-square (the square root of the mean average of the squares) deviation of the estimate from its average value, or the standard error? Or we
could ask, "What are all the parameter values that could have produced this data with at least some specified probability?" In other words, what are all the parameter values under which our data are not low-probability outliers? This gives us the confidence region for the parameterrather than a point estimate, a promise that either the true parameter point lies in that region, or something very unlikely under any circumstances happened-or that our stochastic model is wrong

To get standard errors or confidence intervals, we need to know the distri parameters. These sampling distributions follow from the distribution of the data, because our estimates are functions of the data. Mathematically the problem is well defined, but actually computing anything is another story. Estimates are typically complicated functions of the data, and mathematically convenient distributions all may be poor approximations of the data source. Saying anything in closed form about the distribution of estimates cal responses of statisticians have been to focus on tractable special cases, and to appeal to asymptotic analysis, a method that approximates the limits of functions.

Origin Myths

If you've taken an elementary statistic course, you were probably drilled in the secial cases. From one end of the pos sible set of solutions, we can limit the a simple mathematical form-say mean verages and other linear functions of the data. From the other, we can assume tha the probability distributions featured in the stochastic model take one of a few forms for which exact calculation is possible, either analytically or via tables of special functions. Most such distribu tions have origin myths: The Gaussian bell curve arises from averaging many independent variables of equal size (say, the many genes that contribute to bution comes from counting how many of a large number of independent and individually improbable events have occurred (say, radium nuclei decaying in a given second), and so on. Squeezed from both ends, the sampling distribution of estimators and other functions of the data becomes exactly calculable in term of the aforementioned special functions. That these origin myths invoke vari
ous limits is no accident. The great re

trading day

Figure 1. A series of \log returns from the Standard and Poor's 500 stock index from October 1, 1999, to October 20, 2009 (left), can be used to illustrate a classical approach to probability. A financial model that assumes the series are sequences of independent, identically distributed Gaussian random variables yields the distribution function shown at center. A theoretical sampling distribution that models the smallest
per
sults of probability theory-the laws of tributions of their estimates. We have the \log returns, the \log of the price today large numbers, the ergodic theorem, the been especially devoted to rewriting our nal limit theorem and so on-describe limits in which all stochastic processes in broad classes of models display tral limit thymptotic behavior. The central limit theorem (CLT), for instance, says that if we average more and more common distribution, and if that common distribution is not too pathological then the distribution of their means approaches a Gaussian. (The non-Gaussian parts of the distribution wash away under averaging, but the average of two Gaussians is another Gaussian.) Typically, as in the CLI, the limits involve taking more and more data from the source, so statisticians use the theored to find the asymptotic, large-sample dis-

estimates as averages of independent get Gaussian asymptotics. Refinements to such results would consider, say, the rate at which the error of the asymptotic Gaussian approximation shrinks as the sample sizes grow.
To illustrate the classical approach and the modern alternatives, I'll intro-
duce some data: The daily closing prices of the Standard and Poor's 500 stock index from October 1, 1999, to October 20, 2009. (I use these data because they happen to be publicly available and familiar to many readers, not to impart any kind of financial advice.) Professional investors care more about chang-
es in prices than their level, specificaly es in prices than their level, specifically
divided by the price yesterday. For thi time period of 2,529 trading days, there are 2,528 such values (see Figure 1). The efficient market hypothesis" from fi nancial theory says the returns can't be predicted from any public information including their own past values. In fact, series are sequences of independent, dentically distributed (IID) Gaussian random variables. Fitting such a model yields the distribution function in the center graph of Figure 1
An investor might want to know for instance, how bad the returns ould be. The lowest conceivable log eturn is negative infinity (with all the stocks in the index losing all value) but most investors worry less about an Figure 2. A schematic for model-based bootstrapping (left) shows that simulated values are generated from the fitted model, and then they are treated
like the original data, yielding a new parameter estimate. Alternately, in nonparametric bootstrapping, a schematic (right) shows that new data are simulated by resampling from the original data (allowing repeated values), then parameters are calculated directly from the empirical distribution.

Figure 3. An empirical distribution (left, in red, smoothed for visual clarity) of the log returns from a stock-market index is more peaked and has sub stantially more large-magnitude returns than a Gaussian fit (blue). The black marks on the horizontal axis show all the observed values. The distribu
apocalyptic end of American capital- year.) From the fitted distribution, we ism than about large-but-still-typical 1 losses-say, how bad are the smallest 1 percent of daily returns? Call this that we will do better about 99 percent of the time, and we can see whether we can handle occasional losses of that magnitude. (There are about 250 trading days in a year, so we should expect two or three days at least that bad in a

real $q_{0.01}$ is in that range, or our data se is one big fluke (at 1-in-20 odds), or th IID-Gaussian model is wrong

Fitting Models

From its origins in the 19th century through about the 1960 s, statistics was split between developing general idea about how to draw and evaluate sta tistical inferences, and working out the properties of inferential procedures in ractable special cases (like the one we ust went through) or under asymptot c approximations. This yoked a very broad and abstract theory of inference formulas, an uneasy combination often preserved in basic statistics classes.
The arrival of (comparatively)
and fast computers made it feasible for scientists and statisticians to record lots of data and to fit models to them. Some imes the models were conventional one ncluding the special-case assumption, which often enough turned out to b detectably, and consequentially, wrong At other times, scientists wanted mo

Figure 4. A scatter plot of black circles show og returns from a stock-market index on suc cessive days. The best-fit line (blue) is a linea function that minimizes the mean-squared prediction error. 1ts negative slope indicate o be followed by days with above-averag eturns, and vice versa. The red line shows a optimization procedure, called spline smooth ing, that will become more or less curved de ending on looser or tighter constraints.
which had been proposed long before but now moved from being theoretical curIn principle, asymptotics might handle either kind of problem, but convergence to the limit could be unacceptably slow, especially for more complex models. By the 1970s statistics faced the prob em of quantifying the uncertainty of in ferences without using either implausibly helpful assumptions or asymptotics, all of the solutions turned out to demand even more computation. Perhaps the most successful was a proposal by Stanford aniversity statistician Bradley Efron, in 1977 paper, to combine estimation with simulation. Over the last three decades, Efron's "bootstrap" has spread into all areas of statistics, sprouting endless elaborations; here I'll stick to its most basic forms.
Remember that the key to dealing with uncertainty in parameters is the sampling distribution of estimators. Knowing what distribution we'd get for our estimates on repeating the experiment would give Efron's insight was that we can simulate replication. After all, we have already fitted a model to the data, which is a guess at the mechanism that generated the data. Running that mechanism generates simulated data that, by hypothesis, have nearly the same distribution as the real data. Feeding the simulated data through our estimator gives us one draw from the sampling distribution; repeating this many times yields the sampling distrigives itself its own uncertainty, Efron called this "bootstrapping"; unlike Baron von Münchhausen's plan for getting himself out of a swamp by pulling himself out by his bootstraps, it works. Let's see how this works with the stock-index returns. Figure 2 shows the overall process: Fit a model to data, use the model to calculate the parameter, then get the sampling distribution the model and repeating the estimation on the simulation output. The first time I recalculate q_{001} from a simulation, I get -0.0323 . Replicated 100,000 times, I get a standard error of 0.00104, and a 95 percent confidence interval of $(-0.0347,-0.0306)$, matching the theoretical calculations to three significant digits. This close agreement shows that I simulated properly! But the point of he bootstrap is that it doesn't rely on ability to simulate.

Figure 5. The same spline fit from the previous figure (black line) is combined with 800 spline fit to bootstrapped resamples of the data (blu
limits for the true regression curve (red lines).

Bootstrapping

The bootstrap approximates the sampling distribution, with three sources of approximation error. First there's simutions to stand for the full many replicatribution Clever simulationpling disshrink this, but brute force-just using enough replications-can also make it arbitrarily small. Second, there's statistical error: The sampling distribution of the bootstrap reestimates under our fit ted model is not exactly the same as the sampling distribution of estimates The sampling distribution changes with the parameters, and our initial fit is not completely accurate. But it often turns out that distribution of estimates around the truth is more nearly invariant than so subtracting the initial estimate from the bootstrapped values helps reduce the statistical error; there are many subtler tricks to the same end. The final source of error in bootstrapping is specification error: The data source doesn't exactly follow our model at all. Simulat ing the model then never quite matches the actual sampling distribution
Here Efron had a second brilliant error by replacing simulation from the
model with resampling from the data After all, our initial collection of data gives us a lot of information about the elative probabilities of different values and in certain senses this "empirical dis tribution is actually the least prejudiced estimate possible of the underlying dis or preconceptions, which are possibly accurate but also potentially misleading We could estimate $q_{0.01}$ directly from th empirical distribution, without the me diation of the Gaussian model. Efron's nonparametric bootstrap" treats the original data set as a complete popula tion and draws a new, simulated sample from it, picking each observation with equal probability (allowing repeated va ues) and then re-running the estimatio Thown in Figure 2).
This new method
The Gaussian model is here be the true distribution is more sharply peaked around zero and has substan tially more large-magnitude returns, in both directions, than the Gaussian (se the left graph in Figure 3). For the em pirical distribution, $q_{0.01}=-0.0392$. Thi may seem close to our previous poin estimate of -0.0326 , but it's well beyon Gaussian model we should see value that negative only 0.25 percent of the is, 000 non-parametric replicates-that is, resampling from the data and reesa very non-Gaussian sampling distribution (as shown in the right graph of bution (as shown in the right graph of 0.00364 and a 95 percent confidence interval of $(-0.0477,-0.0346)$.
Although this is more accurate than the Gaussian model, it's still a really simple problem. Conceivably, some other nice distribution fits the returns better than the Gaussian, and it might even real strength of the bootstrap is that it lets us handle complicated models, and complicated questions, in exactly the same way as this simple case.
To continue with the financial example, a question of perennial interest is predicting the stock market. Figure 4 is a scatter plot of the log returns on successive days, the return for today being on the horizontal axis and that of tomorrow on the vertical. It's mostly just to predict, but I have drawn two lines to predict, but I have drawn two lines curved one in black. These lines try to predict the average return tomorrow as functions of today's return; they're called regression lines or regression curves. The straight line is the linear function that minimizes the mean-squared prediction error, or the sum of the squares of the errors made in solving every
single equation (called the least squares single equation (called the least squares
method). Its slope is negative (-0.0822) indicating that days with below-average returns tend to be followed by ones with above-average returns and vice versa, perhaps because people try to buy cheap after the market falls (pushing it up) and sell dear when it rises (pulling it down). Linear regressions with Gaussian fluctuations around the prediction function are probably the best-understood of all statistical mod-
els-their oldest forms go back two els-their oldest forms go back two
centuries now-but they're more venerable than accurate.
The black curve is a nonlinear estimate of the regression function, coming from a constrained optimization procedure called spline smoothing: Find the function that minimizes the prediction
error, while capping the value of the averror, while capping the value of the av-
erage squared second derivative. As the erage squared second derivative. As the
constraint tightens, the optimal curve, constraint tightens, the optimal curve,
the spline, straightens out, approaching the linear regression; as ap constraint loosens, the spline wiggles to try to
pass through each data point. (A spline was originally a flexible length of wood craftsmen used to draw smooth curves, through and letting it flex to minimize elastic energy; stiffer splines yielded flat ter curves, corresponding mathematically to tighter constraints.)
To actually get the spline, I need to pick the level of the constraint. Too small, and I get an erratic curve that memorizes the sample but won't generalize to new data; but too much smoothing erases real and useful patterns. I set the constraint point from the data, fit multiple curves with multiple values of the constraint to the other points, and then see which to the other points, and then see which peating this for each point in turn shows how much curvature the spline needs in order to generalize properly. In this case, we can see that we end up selecting a moderate amount of wiggliness; like the linear model, the spline predicts rever-sonmmetric-days of large negative re turns being followed, on average by bigger positive returns than the other way around. This might be because people are more apt to buy low than to sell high, but we should check that this is a real phenomenon before reading much into it. There are three things we should note about spline smoothing. First, it's much more flexible than just fitting a straight line to the data; splines can approximate a huge range of functions to an arbitrary
tolerance, so they can discover complicated nonlinear relationships, such as asymmetry, without guessing in advance what to look for. Second, there was no hope of using a smoothing spline on substantial data sets before fast comput ers, although now the estimation, including cross-validation, takes less than a second on a laptop. Third, the estimated spline depends on the data in two ways: Once we decide how much smoothing to do, it tries to match the data within to decide how much smoothing to do Any quantification of uncertainty here should reckon with both effects.
There are multiple ways to use bootstrapping to get uncertainty estimates for the spline, depending on what we're willing to assume about the system. Here I will be cautious and fall back on the safest and most straightforward procedure Resample the points of the scatter plot
(possibly getting multiple copies of the (pame point), and rerun the spline smooth-
r on this new data set. Each replication will give a different amount of smooth ing and ultimately a different curve. Fig 800 bootstrap replicates, indicating the sampling distribution, together with 95 percent confidence limits for the curve as a whole. The overall negative slope and the asymmetry between positive and negative returns are still there, but we can also see that our estimated curve is much better pinned down for smallmagnitude returns, where there are lot where there's little information and small perturbations can have more effect

Smoothing Things Out
Bootstrapping has been ramified tremendously since Efron's original paper, and I have sketched only the crudest features. Nothing I've done here actually proves hat it works, although I hope I've made that conclusion plausible. And indeed sometimes the bootstrap fails; it gives very poor answers, for instance, to ques minimum) of a distribution. Understanding the difference between that case and that of $q_{0.01}$, for example, turns out to involve rather subtle math. Parameters are unctions of the distribution generating the data, and estimates are functions of the data or of the empirical distribution. For the bootstrap to work, the empirical distribution has to converge rapidly on me true distribution, and the parameter ion, so that no outlier ends up unduly influencing the estimates. Making "influence" precise here turns out to mean taking derivatives in infinite-dimensional spaces of probability distribution functions, and the theory of the bootstrap is a delicate combination of functional analy sis with probability theory. This sort of heory is essential to developing new ootstrap methods for new problems uch as ongoing work on resampling where the model grows in complexity with the data.
The bootstrap has earned its place in the statistician's toolkit because, of all the ways of handling uncertainty in complex models, it is at once the most straightforward and the most flexible. It will not lose that place so long as the era of big data and fast calculation endures.

Bibliography

Efron, B. 1979. Bootstrap methods: another look
at the jackknife. Anals of Statistics $7: 1-2$. 1 .

First Person: Tim Davis

Recognized internationally for his innovative algorithms and software, Tim Davis's research has
been applied in a vast range of realbeen applied in a vast range of real-
world technological and social applications, from MATLAB to Google Street View, from aiding the FBI to creating original art. He is the recipient of the 2018 Sigma Xi Walston Chubb Award for Innovation, an annual award established in 2006. Previous awardees include puter scientist Rosalind W. Picard puter scientist Rosalind W. Picard and materials scientist Stan Ovshinsky, amon Davis about the software tools he creates, which he describe Robert "mathematical monkey wrenches," some of which he has used to create artworks based on music.

What prompted you to make these mathematical tools in the first place? Was it a problem you were trying to solve, or something else?
I did all my degrees in electrical engineering and was also interested in computer architecture. But all along I was interested in software-just writing the code - all the way back to being a high school student. In 1978, maybe, I was a sophomore or a junior in high school. My brother was an undergraduate in versity and said, "Oh Tim here I'll get you an account on the Purdue main frame. Here's a book on FORTRAN. Have at it." And so I did. I went through all the problems in the book and typed up my punch cards and went to the mechanical engineering lab and stuck
in my cards and computed pi or whatever from the projects in the book. I had fun. By the time I was done, I'd worked summer I worked as a consultant in the computer room with all the other students. I was helping students with their Runge-Kutta differential equation solvers. I had no idea what Runge-Kutta was, but I could help them with their FORTRAN. And being really focused on finding programming bugs in other great way to learn how to find bugs in your own code.

So what was it that led to your work
with matrix computations, now pow-
ering the "backslash" command in
MATLAB, for example?

Going through my undergraduate at Purdue, I wasn't doing linear algebra tion. But I was still writing some soft ware. Then when I was in grad schoo at the University of Illinois, with an in erest in computer architecture, I was looking at how to get the data to the processor faster and I came up with ome ideas. Then I thought, "Well, it's hard to think about that in isolation, so let's look at an algorithm-why not?" haven't stopped looking, basically, move the data around a little better fo that algorithm. Eventually, my thesis turned into one minor section on architecture and just about all of it on a graph and a matrix algorithm. Then for a postdoc, I had the opportunity to work with Iain Duff, who's one of the top experts in the field of sparse matrix computations. He's in southern France, so I spent a year in Toulouse tarted working on the algorithm that 0 years later, became "backslash" in 10 years lat
MATLAB.

Was that when you first started ex plicitly making algorithms for other people, for problems that weren your own?
Well, already as a PhD student, I wrote an algorithm that then didn't solve anybody else's problems. It was a maI started writing another solver when didn't have a matrix I wanted to solve So yes, at that point I was creatin algorithms for other people, like Iain Duff does. He creates algorithms to solve matrix problems, not because he has matrices to solve, but because he's

a computational mathematician. So I'm doing like him, basically. I'm creating solvers that other people will be able academic contribution just like writin a paper is, or discovering a new galaxy would be to an astrophysicist.
And all of it is about solving the matrix equation, $A X=B$?
Yes! Isn't that crazy? It's just all AX=B. I don't care what X is, really. I don't. You your A and B come from. But I want to give you the right X. I don't have a personal attachment to X [laughs]. I just know I want to give you the right one. And that's why we should care that code is written well, because if it's written properly and elegantly and is easy to read and understand, then on these solvers to do things that are important to them. mportant to them.
to build power netwe using my work to build power networks and circuits,
and fly drones, and even rescue girls from the sex-slave trade. Seeing the tool out there and getting used is really heartwarming. Google used my code for a year to place all the photos in Street View without even asking me how my code works and without even
ings such as matrix multiply. So it' till linear algebra, and yet it's beauti ul, and it's solving important prob lems, and, if you do it well and do it
right and do it fast-asymptotically right and do it fast-asymptotically
fast and fast in practice-then the world will use it, and then the world will solve problems with it. That's fun.

Why do you say "It's beautiful"? or me, I see code-and people like me see code-as kind of like the proo of a mathematical theorem. And just like mathematicians might publish many versions of their proofs, there s cated, 10-page proof into an elegant more understandable, more powerful -page proof that also proves the same heorem might open doors to othe methods that could be used to solve ther problems. Just like what math maticians do for mathematical proofs, we do this for software

Once you build one of these tools, do you later see further elegance-furthe nprovements-and so go back to wol ood enough-done-l'm moving on to something else"?
There's really multiple aspects to that question. When I write a piece of soft ware and publish it, I get a paper out of it. I get people using it. It builds mpact, which is good. But then can't stop there, can it? My code-all

code-always has to be updated and maintained at some level. And then someone sends me an email and says, Hey, Im using your code to do this," I'll say, "that would be easy, I'll add I'll say, "that would be easy, I'll add
that!" So I'll add a new feature or do something different with it. I'll make it easier to compile or run, and update the user guide. Yes, I could say, "Okay, I'm done. I'll stop." But there's almost always more things to do. So I maintain the code, even though it's published and done. I need to periodically bring the car into the shop and tinker
with it, right?

What kind of support, if any, do you get as an academic to do this kind of software-maintenance work?
Even if I don't get a paper out of it, it's still worth my time doing the software maintenance, if you will, because I've got users to keep happy, basically. I don't want to let them down. But, in general, building tools as an academic puter scientists who are tool builders like me-we face a risk. That's because writing really good software, software that is better than commercial or government quality, is crazy as an academic, because the payoff is only the impact: It's a valuable contribution, from creating new algorithms and new methods, to making these methods fast- $10,000,5,000,100$ times faster
than prior methods for some of these problems, although sometimes a factor of two is all I get, or sometimes it ties
Of course, if you have that impact, that shows academic credibility to your algorithms and your methods and your work. But what if you build this great mathematical wrench, but it's just not the very best wrench that's out there? Or what if the world doesn't actually need that kind of wrench and so people don't use it? I think I have around 40 journal publications, which one paper has 300 pages of bulletproof one paper has 300 pages of bulletproof tion. But if that code is not used, then it won't have the impact and I'd only gotten one paper out of it, if that. So it's risky, and I kind of barely squeaked through my earlier promotions. But now at Texas A\&M University, my department head, who appreciates my work, she says, "Tim, you know you but I loved it, and I still do.

What about your artwork and using your code to turn music into visual art? Do you polish that artwork too? The code itself to create that artwork is actually fairly rough. It's what I would call my own "internal prototype." I'm not distributing the code, though. I'm

People out there are using my work to build power networks and circuits, and fly drones, and even rescue girls from the sex-slave trade. Seeing the tool out there and getting used is really heartwarming.
that tool-is my paintbrush. So when I use it to render a visualization based on a new piece of music, sometimes I'll
decide, "Nah, I need something different. Let me think about these rules

I've got and let me add to them." II
modify my software to create differen minds of visualizations.

So there's an aesthetic, meaning that you're looking at these images tha are generated across various parame ter spaces and saying, "Okay, that one
appeals to me aesthetically, I'll chose that one." Or you'll tweak the code if you're not happy with any of them? you're not happy with any of them? pher. What'll happen is I'll do this image sweep and look across it and say, "Oh my goodness, I've never seen this before." I just rendered Cat Stevens's rendition of "Morning Has Broken, which is a Celtic hymn, and I came up with a symbol, a graph, that looks like usually like seeing images in clouds They're not there, but your mind puts them there, and then that's the image Now, I have to create 1,000 clouds, and some of them are beautiful. Many of them are beautiful. But then I'll say That's a particularly beautiful cloud or that piece of music."

Online: Hear the music that was rendered by Davis's code into these visuuliazitions, ands see a videoo of a
visualization being made in real time

Computing Science

Recreational Computing

Erik D. Demaine

Martin Gardner was a grea man of many talents. He was n amateur mathematician, a puzzler, a professional magician, a debunker of bout all of these topics. He wrote more than 65 books and published a column, "Mathematical Games," in Scientific American for 25 years, from 1957 to 1982. Because of his influence on countless readers, Gardner became known as the father of "recreational mathematics"-playful mathematical problems designed and solved purely for fun. Gardner's accessible, inviting mpressive numbers of readers gave the general public the opportunity to enjoy mathematics and to participate in mathematical research. Many of today's mathematicians, including myself, entered the field at least in part due to Gardner's influence.
Sadly, Gardner died on May 22, 2010, at the age of 95 . His death has been sorely felt by mathematicians
around the world. But rather than dwell on our loss, I feel compelled to celebrate the tradition that Gardner started. Roughly every two years since 1993, Tom Rodgers has organized a conference in Atlanta called the Gathering for Gardner. It brings together mathematicians, puzzlers, magicians and debunkers who love the work of Martin Gardner and the spirit he em-bodied-playful intellectual curiosity. Gardner's own absence from the it from continually growing in participation and intensity. The ninth Gathering, held last March, was the most prodigious yet, with 300 participants, a half-day sculpture-building party and two evening magic shows.

[^0]1 fold downward

lenges and tricks automatically. Voilà recreational computer science! Gardner's work continues to in The three examples I'll describe are solutions to problems that Gardne posed-ones he stated explicitly or ones that have been inferred from his work. Throughout Gardner's writings are countless mathematical questions puzzles and magic tricks that deserve further research and extension. I en courage everyone to read through his collected works, for the fun this always brings, as well as to help find these your suggestions, which you can send to martingardner@csail.mit.edu. Long live the spirit of Martin Gardner!

One-Cut Magic

Our first example of recreational computer science is inspired by a magic trick performed by Harry Houdini before he was an escape artist. In his 1922 book Paper Magic, he describes how to sequence of folds, cut along a straight line, unfold, and obtain a perfect five pointed star (see the top of the first figure, next page). In 1960, Gardner wrote a Scientific American column that described a few such magic tricks, producing "simple geometrical figures" by a sequence of folds and one complete straight cut. Gardner included the tantalizing statement: "More complicated designs ... present formidable problems." To a myself, this screams "Unsolved problem!" Whenever we have several ex amples of a particular style of magic amples of a particular style of magic it represents a general principle. In this case, we know how to make several simple figures by folding and making one complete straight cut. But what is the complete range of figures that are possible to make in this way, and what sequence of folds will make them? To

one cut $o p$

I am a theoretical computer scientist, which puts me at the boundary of comgoal of the field is to use mathematics to understand computation-what it is and what it can do. Readers of this column already know that computation is extremely powerful, offering new perspectives, approaches and computer science is highly unusual in this universality of influence-the only other example I know of is mathemat-ics-and it's what excites me about "computational x " is central to most fields where it has been considered (the " x " could be biology, chemistry, neuroscience, geometry, linguistics, finance and so on)-and for other fields, I be What I'd lik yet to be discovered. What Id like to show here is that about more recreational pursuits too specifically puzzles and magic. Martin Gardner is my inspiration. He did not consider puzzles, magic and mathemat ics as separate pursuits, but blurred the traditional boundaries between them He routinely illustrated mathematics using puzzles and magic, and he studied puzzles and magic using mathe matics. I like to apply the same spirit to theoretical computer science, where the ways to think perspective offers new ic- specifically, how to design chal-ic-specifically, how to design ch

Puzzles and tricks from Martin Gardner inspire math and science

The fold-and-one-cut method can be used to produce shapes of theoretically limitless complexity. One such shape is a swan, with fold lines a indicated at left, leading to the collapsed paper with one cut line at center, and resulting in the final figure at right. To download and print this
example, go to http://amsci.org/swan.pdf. For other examples, see the website http://erikdemaine.org/foldcut//
of paper. Now find the lines that bisect each of the angles of the triangle by starting at one of its corners, folding one edge on top of another, unfolding, and repeating for the two other corners. A classic theorem from high-school geometry is that the three point Now fold along a line through this point so as to bring one of the three triangle sides onto itself, and unfold. The fold will be perpendicuar to the triangle side. If you like, you can repeat with the two other sides, though only one perpendicular fold is necessary. The final step, which is the hardest if you've never made a "rabbit ear" in origami, is to fold along all the creases at once, with the angu"mountain" folds) and the perpendicular ones folding the other way (called "valley" folds). Once you do this, all three triangle sides lie along a line, with the inside and outside of of that line. What's cool is that this works for any triangle-no line of
symmetry required.
To our surprise, we also found a
And there's more: You can make several polygons at once with a single cut. ing initials, such ecially useful for spellpared for my first Gathering for Gardner (the fifth one abbreviated G4G5) in 2002 It's rather difficult to fold any) in 2002. yond a few letters, but in printhing becould fold a piece of paper make one complete straight cut and produce the entire Gettysburg Address.
enthe the

Although this research was motivated by magic tricks, the theoretical computer science that resulted turns out to have more serious applications as well. A closely related problem is so that it fits inty folding an airbag flat such as your steering whempartment tion to the fold-and-cut problem leads to a natural way to collapse threedimensional surfaces such as airbags, and this approach has been applied in some simulations of airbag deployment. So recreational computer science may even save lives.

Coin-Sliding Puzzles

 way to make any polygon with anynumber of sides not just triangles. So you can make the silhouette of your favorite shape, such as the swan in the third figure (above), by folding and then making one complete straight cut. The fold is substantially more complicated, but not too hard with practice. I recommend precreasingfolding and unfolding each crease ine-before attempting to fold all the creases simultaneously and collapse the swan down to a line.
two-adjacency" constraint is what makes the puzzle challenging. It migh initially seem impossible to get rid of all the three-coin triangles, but with little insight, it is possible.
There are several coin-sliding puz zles of this type, with the two-adjacenc dered: How does it generalize? The natural computational question here is whether computers can solve this type of puzzle: Given a starting configura tion and a goal configuration of coins, can a computer algorithm determin whether the puzzle is solvable unde he two-adjacency constraint, and if so ind a sequence of moves to solve it Even better, can it find the shortest se quence of moves to solve the puzzle?
Both of these questions are actuall still unanswered. I suspect that the sed ond question has a negative answe, and it is computationally intractable to determine the fewest moves needed to solve a puzzle, but no one has proved hat yet. However, the first question might have a positive answer, which would be much more interesting-i would essentially provide a genera theory for this type of puzzle
In 1998 Verrill visited my father an ing during which we came up with and tackled the first problem. We observed that the puzzle in the fourth figure adheres to a triangular grid: If you draw an equilateral triangular grid where th triangle side length equals the diamete of the coin, then the centers of the coin always remain at grid intersections. This property is a neat consequence of the wo-adjacency rule because the coin start on this grid.

For puzzles on the triangular grid, we were able to develop a general computational theory. We found some very simple conditions for when it is figuration into a goal configuration via two-adjacency moves. First, the number of coins must be the same in the two configurations, and it must be possible to make at least one two-adjacency move from the starting configuration. Second, and more interesting, the goal configuration must have at least one of three patterns that make it possible to have a last move that solves the puzzle. The patterns are a triangle four or more coins, and a connected group of three coins along with another connected group of two coins.
As long as the goal configuration has at least one of these patterns, the puzzle is guaranteed to be solvable, and a computer algorithm can tell you how. This result holds even if the coins have different labels (for example, some are heads and some are tails), provided the
This kind of simple characterization of solvable puzzles not only helps to find outcomes, but also makes it easy to design new puzzles. Armed with a guarantee about when a puzzle will be solvable, we can design a new one within those constraints that will also be visually interesting. For example, can you solve the puzzle in part b of
the fourth figure? the fourth figure?
Another special type of coin-sliding puzzle arises if we replace the triangular grid with a square grid, requiring
every move to place a coin on this grid. These puzzles are substantially harder to solve, both in practice and in theory. We came up with a nearly complete characterization of solvable puzzles, showing how to complete challenges with at least two "extra coins" to help navigate the other pieces. Puzzles
without any extra coins are impossible to solve and puzzles with just one extra are typically either unsolvable or not too engaging-but we still don't have a computer algorithm to tell us exactly which puzzles can be solved. The situation with two extra coins is quite interesting, however, and has again allowed us to design several puzzles. Try, for instance, the puzzle in part c of the fourth figure. To see more coin-sliding puzzles, visit http://erik-
demaine.org/slidingcoins/.

a
 \rightarrow OOOO

${ }^{\circ}$ OODOD \rightarrow (1) (2OD

c

Reconfiguring coins becomes an interesting challenge when there are constraints. For instance can you transform a pyramid of coins (a) into a line using only moves that place coins in contac with at least two other coins? The minimum possible number of moves is seven; a solution is
shown two wo the next page. Similarly, can you split the abbreviation of this magazine's title (b) iven. Finally, in a new coin-sliding puzzle, see if you can correct the spelling of the abbreviation (c) using only two-adjacency moves on a square grid. This time the minimum number of moves is eight. To see more puzzles of this type, go to http://erikdemaine.org/slidingcoins/.

Coin-Flipping Magic

 Our last example of recreational computer science is inspired by two tricks involve flipping coins into a desired configuration. Because a volunteer manipulates the coins, these tricks have the distinction of being performable over the telephone, on radio or on tele-vision, thus being performed "person vision, thus being performed
ally" for many people at once

The first trick, independently invented by Martin Gardner and Karl Fulves before 1980, involves three coins arranged in a line. The spectator arranges the coins as heads or tails, in any combination they like. The magician's goal-without seeing the coins-is to make them all the sameall heads or all tails. Naturally, the spectator should not choose this out-
come as the starting configuration, or else the trick will be over rather quickly. The magician now gives a sequence of instructions: Flip the left coin, flip the middle coin, and flip the left coin again. In between, the magician asks whether the coins are yet all the same, and continues to the next instruction only if the trick is not yet over. It's no surprise that the magician can eventually equalize all the coins, but it's mpressive that always takes at mos

Why these three moves work is cosely linked to a set of codes in computer science that are widely used to day to reduce errors when represent These so-called with analog signals fter Frank Gray from Bell Labs, who patented the system in 1947, have th feature that every two successive bin ry values differ by only one bit. A con
ged in a line (top row) can make them all heads or tails in at mo three moves (black arrows). Here the instruc tions are to flip the left coin (second row), the he middle coin (1. how, then flip the lef coin again (fowth row) resulting in

Four coins arranged in a circle are a variation on the previous coin-flipping trick. The magician tells a volunteer which coins to flip, but this time, before each move, the volunteer can rotate the circle of coins however he or she likes. The puzzle starts at the top left then continues on he second line. Yellow outlines indicate the coins to be flipped in the next move. In this case the volunteer rotates the coins only between step
two and three, and between steps four and five. The magician still accomplishes the trick in seven moves.
figuration of three coins can be seen as a corner of a three-dimensional cube: There are three coins, and each can be
either heads or tails, making $2^{3}=8$ coreither heads or tails, making $2^{3}=8$ corners. But the cube is effectively folded in half because the all-heads configuration is just as good as the all-tails conconfigurations" arranged in a two dimensional square. The Gray code tells us how to traverse all these nodes by changing one coin at a time, without ever repeating a configuration. Because we are counting moves instead of configurations visited, we get to subtract 1 , for a total of 3 moves. More generally, if we had n coins, we'd have 2^{n} configurations, 2^{n-1} double configurations, and

A solution for the first coin-sliding puzzle, shown on the previous page, transforms a pyramid of coins into a line. With the rule that each move must place a coin so it touches at least
two others, seven moves are required.
$2^{n-1}-1$ moves in the worst case. This study makes it clear why the trick is for require $2^{3}-1=7$ moves
To make the trick more impressive, we can give the spectator more freedom. A 1979 letter from Miner Keeler to Gardner, which Gardner wrote about
in Scientific American in the same year in Scientific American in the same year,
describes a trick involving four coins describes a trick involving four coins of the trick are the same as before, but this time the spectator can rotate the circle of coins however he or she likes before following each of the magician's instructions. The magician follows these seven steps: Flip the top and bottom coins (after rotation), flip the top
and right coins (after rotation), flip the left and right coins (after rotation) flip left and right coins (after rotation), flip
the bottom coin (after rotation), flip the the bottom coin (after rotation), flip the
left and right coins (after rotation), flip left and right coins (after rotation), flip
the right and bottom coins (after rotation) and flip the top and bottom coins (after rotation). Despite the spectator's apparent flexibility, the magician equalizes all the coins in no more moves than the original four-coin trick (see the sixth figure, above).
What makes this trick possible? A recent paper by two MIT students, Nadia Benbernou and Benjamin Rossman, along with my father and myself,
analyzes what type of spectator moves such as "rotate the table" still let the magician equalize the coins with a clever choice of moves. The solution is closely tied to group theory, a field crucial to modern cryptography. The key requirement turns out to be that the number of different moves that a spectator can make is a power of 2 . In
the case of a rotating table the numthe case of a rotating table, the num-
ber of coins must be a power of 2 (as in the four-coin trick above). But it is also possible, for example, to allow the table to be flipped over, because this precisely doubles the number of posible spectator moves.
Like many people, I love puzzles and magic. I also love theoretica computer science. It is wonderful to the footsteps of Martin Gardner, and I hope that more computer scientists will consider the recreational side as a good source of fun problems to solve which may also lead to practical research. Let's keep carrying the torch that Gardner left burning.

Bibliography
Benbernou, Nadia, Erik D. Demaine, Martin L. Demaine and Benjamin Rossman. 2008 Coin-flipping magic. Presented at Gather ing for Gardner 8, March. http:// erikde maine.org/papers/CoinFlipping. Cipra, Barry, Erik D. Demaine, Martin L. De-
maine and Tom Rodgers (eds). 2004 . Tribu maine and Tom Rodgers (eds). 2004. Tribute
to a Mathemagician. Natick, Mass: A. K. Pe ters, pp 23-30 and 63-72.
Demaine, Erik D., Martin L. Demaine Helena A. Verrill. 2002. Coin-moving puz
zles. In More bridge More Games of No Chance. Cambridge, U.K.: Cambridge University Press,
pp 405-431. Pp $405-431$.
Demaine, Erik D.
Demaine, Erik D., and Joseph O'Rourke. 2007
Geometric Folding Al Geometric Folding Algorithms: Linkages, Ori-
gami, Polyhedra. Cambridge, U.K.: Cam bridge University Press.
Gardner, Martin. 1989. Penny puzzles. In
Mathematical Carnival. Mathematical Carnival, chapter 2. Wash-
ington, D.C.: Mathematical Association of America. Originally published in Scientific American, February 1966.
Gardner, Martin. 1995. Paper cutting. In New
Mathematical Diversions, chapter 5 Mathematical Diversions, chapter 5. Wash-
ington, D.C.: Mathematical Association of ington, D.C.: Mathematical Association of
America. Originally published in Scientific
American, June 1960.

Roots to Fruits: Responsible Research for a Flourishing Humanity

How scientific virtues serve society

November 4-7, 2021
Meeting location: Conference \& Event Center Niagara Falls,
New York*
Lodging: Sheraton Niagara Falls
Registration opens April 1, 2021 at www.sigmaxi.org/ amsrc21

stats were really imperfect measurements. James's approach didn't just re-
place one intuition with another. He let the game decide which stats did the best job of predicting offensive output. This approach is not easy. Trying to directly predict the number of games won would confound the skill of a team's offense with its pitching and fielding. James figured that one could test each offensive stat by trying to predict the total number of runs produced by each team nating any effects of defense. It turned out that on-base percentage and slugging percentage were far superior to any individual offensive statistics used up to that point. James and others similarly devised statistics for pitching and fielding that were more independent of context. Beane's use of the new statistics is appealing because it defeated the wisdom and training of other industry experts.
His approach is summed up in one of His approach is summed up in one of Armed with his new data-mining methods, Beane challenges other talent evalua tors about a player they all deem "good." A scout counters him, praising the player's swing. Beane's reply: "If he's such a good hitter, why doesn't he hit good?" In other words, expert intuition aside, the data don't lie.

Bacteria Stats

As I see it, the baseball revolution produced an "idiot's guide" to creating a
eam roster-a handbook based on hings one can learn not through de cades of experience and intuition but by applying general quantitative meth by applying general quantitative meth
ods. It's the same kind of approach we ods. It's the same kind of approach we Mountains of data and a capacity for analyzing them have also become available to science in the past few years. Data are now poised to trump the intuition of ex perts and the "facts" that scientists have championed over the years
For instance, consider my own field, a species is-a group of organisms that can successfully produce viable and fertile offspring. Biologists have long believed that species defined this way represent the fundamental units of ecology and evolution.
In the case of evolutionary microbilogy (my specialty), it is particularly important to be able to recognize all the fundamental units of ecology among losely related bacteria. We especially gerous from those that are not and those that are helpful from those that are not Indeed, we would like to identify all the bacterial populations that play distinc ecological roles in their communities. As in baseball, the discovery of bac erial diversity has experienced a transition from relying on the subjective judgment of experts to objective and universal statistical methods. Originally species required a lot of expertise with particular group of organisms, involv ing difficult measures of metabolic and chemical differences. To make the tax onomy more accessible, decades ago the field complemented this arduous approach with a kind of idiot's guide where anyone could use widely avail able molecular techniques to identify species-for example, a certain level o verall DNA sequence similarity.
(among others) is to identify species
roups of mand the 19 percent similar in a particular universal $\begin{array}{ll}\text { is not alone-there is a Yugoslavia of } \\ \text { diversity within the typical recogized }\end{array}$ percent similar in a particular universal
gene. The problem is that-like the case
species: $\begin{array}{ll}\text { gene. The problem is that-like the case } & \text { species: Much like the veneer of a uni- } \\ \text { of baseball where batting average, RBIs } & \text { fied country that hid a great diversity }\end{array}$ and home runs were used to supplement expert knowledge-nobody in microbiology tested whether the new molecular techniques actually came closer to solving the problem of recognizing the most closely related species. Unfortunately, microbiology's current NA-based idiot's guide, as well as the ceded it has yielded species with unhelp fully broad dimensions. For example, Escherichia coli contains strains that live in our guts peaceably, as well as variou pathogens that attack the gut lining and others that attack the urinary tract. More over, established fecal-contaminatio detection kits that are designed to iden tify E. coli in the environment are now kown to register a positive result wit lives in freshwater ponds, with little pacity for harming humans. And E coll
of ethnicities and religions, E. coli (and most recognized species) contains an nomic diversity obscured under the banner of a single species name.
We can fix this confusion the same way that baseball improved its data analysis: by letting the game-or in our
case, nature-decide which stats best predict what we most want to know. In microbiology the trick is to let the bacteria tell us what DNA sequence approach most accurately identifies the bacteria that are significantly different in their habitats and ways of making a living. Two teams, including Martin Polz's group at the Massachusetts Institute of Technology and my group at Wesleyan and Montana State Universities, have developed computer algorithms cialized to different habitat types within

an officially recognized species. These algorithms reject the expert-based cri placed within a species. Instead, they analyze the dynamics of bacterial evolution to let the organisms themselves tel us the DNA sequence criterion that best demarcates ecologically distinct popula tions for a particular group of bacteria. Another opportunity for discovery in biology through data mining stems from the new Human Microbiome lected from various bacteria-laden hu man habitats, such as the gut, mouth skin and genitals, with samples taken from individuals of different age, sex health, weight and diet.
For example, Dusko Ehrlich of the French National Institute for Agricultural Research and his colleagues recently analyzed the bacterial genes purified from the feces of 39 humans from six 100 million bases of bacterial DNA per person. They attempted to identify bac

Abstract

spoken newspaper magazine academic fiction $\begin{array}{llll}1 & 1 & 1 & 1 \\ 40 & 60 & 80 \\ \text { frequency }\end{array}$ search of the Corpus of Contemporary American English reveals that the phrase "she drew her breath" and its variants (he drew his breath, she draws her breath, draws breath, common in literature and other written sources than in spoken language. Such examples demonstrate that before audio recording became available, dialog in novels and stories may give poor examples in the analysis of how spoken terial biochemical functions associated with age and body mass. Their intuition suggested various guesses for the identy of these genes, which were largely dentified, but data-driven method ar relationships gave much strontriven discovery. Ondicated a negat da ation between obesity and the microbe capacity for harvesting energy Ongoing massive sequencing proj ects in human, marine and soil envionments allow us to characterize the iversification of bacteria: to discover most newly divergent bacterial spe dies, to characterize them as specialized do different habitats and to identify the ochemical functions most important depends critically on how well we de scribe the habitats we sample.

\section*{Word Mining}

Beyond the field of microbiology, datamining revolutions are extending across the natural and social science although meteorology and economics, ith decades-long access to mountain pprach). In the granddaddies of this particularly interesting to seences, it is mining has recently helped linguis analyze how words are actually used in writing and speech-for example,

as seen in the challenge of producing a dictionary. Traditionally, analysis of of written texts, usually from a canon of books accepted by experts as exemplars of "proper" usage, a step that required of proper usage, a step that required an army of volunteers who sent in quo-
tations to the dictionary editors. Then the appointed set of language experts made subjective decisions about new usage-what is acceptable, what is vulgar and what is vile. A data revolution in linguistics is freeing us from needfrom the opinions of the learned experts. Language analysis is heading toward a Language analysis is heading toward a
data-driven idiot's guide that can decide on acceptable usage based on what is actually accepted in writing and in speech. Various corpora of written and spoken language have emerged online, and these allow extensive analysis of how and where words are used. Entire uploaded texts can be searched and analyzed. The largest is the Oxford Cortexts from the entire Anglosphere. The U.S.-centered Corpus of Contemporary American English (COCA) features a user-friendly website (http://corpus. byu.edu/coca/). These corpora, when searched, give a 10 -word neighborhood around each use of the word, which yields much information. For instance, a searcher can see whether the word is used in the singular or plural form, as well as words with it and so on frequently coJeremy Butterfield describes how these corpora can vield a picture of English (or potentially any language) as it is actually used, as validated by the entire community of writers and speakers.
One way that corpus-based analysis bucks expert opinion is in deciding when an evolutionary change in usage has become acceptable simply by the criterion of being frequently accepted. tering the English language from Greek, maintained its original meaning as the plural of "criterion." Cringe though we may, our own experiences plus analysis of the Oxford Corpus show that use of "criteria" as the singular is catching up on its use as the plural. The corpus also allows us to note changes in old expressions that still hold meaning for us, but only if we change the words a ilttle. Shakespeare's "in one fell swoop" later, but only through changing the obsolete adjective "fell" to one that sounds
similar and holds a similar meaning of experts, the language is de facto evolving, and the corpus allows us to validate these changes.

Lost to the Past

As useful as the idiot's guide approach has been across fields, gleaning mean ing from old data serves up severe challenges. Difficulties can arise because a the time events happened, the data recorders did not anticipate that the inforyet imagined. In cases stretching across baseball, biology and language, impor tant items were not reported or, in some cases, observed at all. There is a twin problem to using past data, which is a communitarian challenge-appreciating that data are often used in ways unimag ined at the time of collection, how can we make the data we record today more usable and valuable in the future?
As baseball and the sciences have taken an interest in mining old data for
new insights, it has turned out that the old data sets are often sufficiently complete for us to discover new "laws" of baseball or science. Yet in far too many cases, fresh scrutiny of old data reveals painful omissions proving that science has missed an opportunity.
In retrospect, I am amazed at how little interest baseball and biology have shown for the future use of data. In baseball, the traditional play-by-play liably available until 1988, when the pitch-by-pitch record became the standard. The new record turned out to be important in many ways-for exam ple, in managing a pitcher's productivity, health and longevity.
Until recently, biology was equally shortsighted in its data collection; this has created a problem for biologists who would like to analyze other scientists'
published data. For example Cathy Lozupone and Rob Knight at the University of Colorado figured out from analy ses of others' data that the most difficult evolutionary transition in the history of bacteria has been from saline to non saline environments and vice versa However, because the original researchers did not record the actual salinity levels, Lozupone and Knight could not pinpoint the precise concentration of salinity that has been most difficult to cross. in biology were typically limited to what might be interesting for the experiment
$\frac{\text { SEPT. } 9,1965}{\text { DATE }} \frac{V_{\text {ARTENDANCE }}}{\text { ARO-P PLEKOUDRS }-J_{\text {ACKOWSK }}}$

In 1965, baseball pitcher Sandy Koufax had a perfect game-allowing no runners from the Chicago Cubs-which the author saw with his Little League team. A scorecard shows Koufax struck out bat ters " "K") and others had fly balls to right (""9") or left ("7") field. But the play-by-play scoring for-
mat missed the game's pin-drop moment during Billy Williams's seventh inning at bat. Although Williams eventually flied out ("7"), a pitch-by-pitch record (inset) shows that before he had a strike ("C"), a foul (" F ") and a hit ball (" $"$ " "), Koufax initially pitched three balls (" $" \mathrm{~B}$ "), one errant pitch
away from walking the hitter to base and messing up perfection. (Image courtesy of the author.) periment in the same lab. Today, biolo- Advanced Value Metrics (AVM) system gists are increasingly expected to anticipate likely uses by others of the data we gather and are taking pains to do so, but this forethought is not easy.
I recently met with Hilmar Lapp, a database expert at the National Evolu-
tionary Synthesis Center (NESCent), and discussed how researchers could avoid omitting important elements of data. He said that it is too much to expect, in the case of biology, for one researcher to think to include all the observations worhy of recording for posterity, he sug gests what is needed is a crowd intelligence." Accordingly, NESCent and other organizations have sponsored working groups to pool ideas and propose stan-
dards and directions of biological data collection in novel areas of inquiry-that is, to foster crowd intelligence. For example, the Genome Sequencing Consortium recently established standards for recording environmental data when genes and genomes are sampled; earlier action might have avoided the debacle of the missing salinity data Lozupone and Knight encountered
In some cases, we do not have data on old events, not because of a lack of technology was not available at the time.
automatically describes each hit ball by its trajectory, velocity and point of hitting the ground. The AVM description of a hit allows analysis of how frequently a fielder can catch a ball that usually ends up being a double. But no one could prior to the advent of this technology Until recently in biology a lack of crobiological technology limited plant ecologists' understanding of the factors allowing a particular plant species to grow. Plant ecologists discovered only recently that the success of many plant species in nature is determined by helpful and harmful microbes that live in the
soil. Therefore decades of studies trying soil. Therefore, decades of studies trying
to understand the successes and failures of plants came up short because they failed to collect data on soil microbes.
In linguistics, the lack of technology for audio recording has hindered an analysis of spoken English usage over time. You might think that dialog written in novels and stories would be a good substitute for actual sound recordings; these pages are frequently as good a record as we will get. However, it is discouraging that a corpus-based
analysis of word usage in speech versus fiction by lexicographer and author

Orin Hargraves has shown that certain clichéd phrases, which appear to mimic pore frequently in literature than in real life. For example, hardly anyone really says "he bolted upright" or "she drew her breath," but these forms are found with surprisingly high frequency in literature. Consequently, an unbiased corpus-based account of spoken English usage begins with abundant voice re cording in the 20th century
Analyses of huge data sets allow us to move beyond our previous understand than we have available to us today. There so much possibility for a data-drive explosion of understanding of games, reatures and words by explorers today and in the future. We owe these future explorers the best and most complete record of life today that we can offer.
The Moneyball film opens with wisdom from Mickey Mantle: "It's unbe lievable how much you don't know about the game you've been playing
all your life." Surely the same is true for many in the natural and social sciences, pondering the areas they have been studying all their careers.

Bibliography

Arumugam, M., et al. 2011. Enterotypes of the Scraft E FM. Cohan M. Küh S Sent Becraft, E., F. M. Cohan, M. Kühl, S. Jensen and
D. M. Ward. 2011. Fine-scale distribution patterns of Synechococcus ecological diversity in the microbial mat of Mushroom Spring
Yellowstone National Park Applied and Envi Yellowstone National Park. Applied and
ronmental Microbioloy 77:7689-7697.
Butterfield, J. 2008. Damp Squid: The Englis Butterfiela, J. 2008. Damp Squid: The English
Language Laid Bare. Oxford: Oxford Univer Language L
sity Press.
ohan, F. M., and S. M. Kopac. 2011. Microbial
genomics: E. coli relatives out genomisss, E. coli relatives out of doors and
out of body. Current Biology 21:R587-R589. James, B. 2011. Solid Fool's Gold: Detours on
the Way to Conventional Wisdom. Chicage the Way to Con
ACTA Sports.
Kopac, S., and F. M. Cohan. 2011. A theory
based pragmatism for discovering sifying newly divergent bacterial species. Genetics and Evolution of Infectious Diseases,
Genetics and Evolution of Infectious
ed. M. Tibayrenc. London: Elsevier.
Lewis, M. 2003. Moneyball: The Art of Winning
an Unfair Game. New York: W. W. Norton. ozupone, C. A. and R Knight 2007. Glob Lozupone, C. A., and R. Knight. 2007. Global
patterns in bacterial diversity. Proceedings of the National Academy of Sciences of the U.S.A 104:11436-11440.
Wiedenbeck, J., and F. M. Cohan. 2011. Origin
of bacterial diversity through horizontal gene transfer and adaptation to new eco logical niches. FEMS Microbiology Review
35:957-976. 35:957-976
Zimmer, B. 2011. The jargon of the novel, com-
puted. New York Times, July 29 .

Ode to Prime Numbers

Primes offer poetry both subject matter and structure

Sarah Glaz

1 T
O bRANCH OF NUMBER THEORY is more than the study of prime numbers," wrote Martin Gardner in his essay, "Patterns and Primes." It is therefore no wonder that prime numbers show up in another human endeavor that delves into mysteries in search of patterns and elegance-poetry. As a mathematician and poet, I have long been interested in this
confluence. confluence.
Some poems, echoing the purpose of early poetic treatises on scientific principles, attempt
to elucidate the mathematical concepts that underlie prime numbers. Others play with underie prime numbers. Others play with rive their structure from mathematical patterns involving primes. Whatever the mode of introduction, the meeting of poetry and primes"those exasperating, unruly integers that refuse to be divided evenly by any integer except themselves and 1, " as Gardner described them-is often an eventful one.

Poetic Mathematics
Gardner often quoted poems in his Mathematical Games column for Scientific American, and he wrote several essays on prime numbers. He could hardly have found a better poem for the subject than British poet Helen Spalding's "Let Us Now Praise Prime Numbers," which he reprinted in the essay "Strong Laws of Small Primes." The poem captures elements that have made primes an object of fascination since the time of Euclid. Spalding (1920-1991)

Sarah Glaz is a professor of mathematics at the University of Connecticut. She is the author of Commutative Coherent Rings (1989) and coeditor of two volumes of articles, all published by Springer. A third edited volume, Commutative
Rings, Integer-valued Polynomials and Polynomial Functions, is forthcoming from Springer in 2014. She is coeditor of the poetry anthology Strange Attractors: Poems of Love and Mathematics (CRC Press/A K Peters, 2008), and her new and Mathematics (CRC Press/A K Peters, 2008), and her new
edited collection, Bridges 2013 Poety Anthology, vill appear
this summer from Tesselatations Publishing.
ficult to trace after her last publication in The London Magazine in 1961

Let Us Now Praise Prime Numbers

Let us now praise prime numbers
With our fathers who begat us:
The power, the peculiar glory of prime numbers Is that nothing begat them
Adams among the multiplied generations.
None can foretell their coming.
Among the ordinal numbers
They do not reserve their seats, arrive unexpected
They rise like surprising ponts
Each absolute, inscrutable, self-elected
In the beginning where chaos Ends and zero resolves,
hey crowd the foreground prodigal as forest,
Far distance to infinity
Yields them rare as unreturning comets.
O prime improbable numbers,
Long may formula-hunters
Steam in abstraction, waste to skeleton patience
Stay non-conformist, nu
Phenomena irreducible
To system, sequence, pattern or explanation.

-Helen Spalding

The poem's first stanza alludes to the Fundamental Theorem of Arithmetic. This theorem states that every positive integer greater than 1
is either a prime number or can be expressed as a unique product of prime numbers. Thus the primes are the building blocks of the integers and, consequently, of the entire real number system. In the second and third stanzas, Spalding suggests how prime numbers appear among the other numbers: Scattered without a discernible pattern, they fan out and occur less frequently as the numbers grow larger. However, despite this reduction in frequency, an infinite number of primes exists. Euclid's
proof of the infinitude of prime numbers, circa

Prime numbers capture the attention of visual artists and poets alike. Prime Mark, a 2010 work by Paul Ashwell, consists of 72 small canvases, each of which displays symbols that represent a number. Nonprime numbers are
shown by combinations of symbols that indicate their prime factors. See more at http:/paulashwell.co.uk/. shown by combinations of symbols that indicate their prime factors. See more at http://paulashwell.co.uk/.

300 BCE , is considered to be one of the most elegant proofs in mathematics-a poem in its wn right. Michael Szpakowski's Proof, a Short pera offers a poetic and musical rendition of somedancersandmusicians.com/proof/.
In the poem's final stanza, Spalding touches on one of the deep mysteries associated with prime numbers: our inability to pin them down with a formula. Prime numbers smaller than a given number N can be found through a techOr Eratosthenes (ca 276-195 вCE) the Greek mathematician who discovered it The "sifting" consists of a simple divisibility test and the systematic deletion of all the proper multiples of the prime numbers up to the largest prime smaller han the square root of N. The method works best when N itself is small. For $N=100$, for exmple, the deletion leaves in the sieve the first 25 primes
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41,
$43,47,53,59,61,67,71,73,79,83,89,97$
Since the time of Eratosthenes, many techniques have been invented to "catch" prime
umbers, but as yet no formula has been found that covers them all. In particular, it is notorivusly difficult to produce very large primes.
Neither has a pattern been found to predict their distribution within a given interval of numbers. In 2000, the Clay Mathematics Institute listed seven of the most important open problems in mathematics. The institute offers an award of $\$ 1$ million to anyone who publishes a solution to one of these Millennium Prize Problems. One problem, the Riemann Hypothesis, cermulated by Bernhard Riemann (1826-1866), a conjecture about the zeros of the Riemann zeta function. The function, ζ, is defined for complex variables, s, and a value of s for which $\xi(s)=0$ is called a zero of zeta. The zeta function was introduced by Leonhard Euler in the early 1800s as a function of a real variable. Riemann extended the function to complex numbers and established a connection between its set of zeros and properties of prime numbers. The Riemann Hypothesis is considered to be the most imporits solution would advance our knowledge of the distribution of prime numbers. Tom Apos-

Where are the zeros of zeta of s ?
G. F. B. Riemann has made a good guess; They're all on the critical line, saith he, And their density's one over 2pi log t.
This statement of Riemann's has been like a trigger And many good men, with vim and with vigor, Have attempted to find, with mathematical rigor, What happens to zeta as mod t gets bigger. -Tom Apostol, from "Where Are the Zeros of Zeta of s?"
Many other questions about prime numbers remain unanswered. Some of these problems and their partial solutions, as well as the spell
cast by primes on the mathematicians who study them, have also made their way into poetry.

Prime Culture

Prime numbers have applications in computational fields, including cryptography and statistics, as well as in many scientific domains, such as engineering and physics. They also offer
what Richard Crandall and Carl B. Pomerance call, in their 2005 book Prime Numbers: A Computational Perspective, "cultural connections." These cultural connections manifest themselves in poetry in a variety of ways.

The concept of primality is employed in poems as a metaphor for the intoxicating mysteries of life and human behavior. An example of this phenomenon is found in "Prime Numbers," by Jim Mele.

Prime Numbers

Prime numbers,
I remember them
like drinks
following complicated folk laws.
Out in California
a friend visits a peb
a friend visits a pebble
in this uncertain life

- Sim Mele

The depth of the cultural connection between primes and poetry becomes more apparent when we examine the inclusion of specific prime numbers in poems. The affinity between numbers and words has roots in the invention of alphabetic writing by the Phoenicians in the and millennium BCE, when numbers came to be denoted by letters of the alphabet. In ancient
poetry, especially in the domain of magic, myspoetry, especially in the domain of magic, mys-
ticism and divination, every word acquired the number value of the sum of its letters and every number attained the symbolic values of one
or more words in whose spelling it appeared. Historian of mathematics David Eugene Smith
notes that 3 and 7 "were chief among mystic numbers in all times and among all people." This, he proposes, is because 3 and 7 are the
first prime numbers-odd, unfactorable, unconnected with any common radix, possessed of various peculiar properties." In other words, of various peculiar properties. In other words,
3 and 7 acquired a special importance precise3 and 7 acquired a special importance precise-
ly because of their primality. Vestiges of such significance, combined with layers of cultural, sociological and historical meaning, allow prime numbers to evoke powerful images and emotions, both personal and collective. Poems featuring the prime number 7 exemplify this effect. Perhaps most notably, 7 appears in key religious texts. It shows up in the first poem
of Genesis, the first book of the Bible, as well as in the New Testament, the Koran, and others. in the New Testament, the Koran, and others.
Seven also appears in the Epic of Gilgamesh-one Seven also appears in the Epic of Gilgamesh-one
of the earliest known works of literature, dated around 2,000 все. The contemporary poems "Reasons for Numbers," by Lisel Mueller, and "How I Won the Raffle," by Dannie Abse, reflect the layers of history and mystery that the number 7 carried with it into the present; both are excerpted below:

Because luck
Because luck
is always odd
and the division
of history
into lean and fat
mysterious
-Liesel Mueller, from "Reasons for Numbers"
I chose 7 because those ten men used to dance around the new grave seven times.
Also because of the pyramids of Egypt
the hanging gardens of Babylon:
Diana's Temple at Ephesus;
the great statue of Zeus at Athens;
the Mausoleum at Halicarnassus;
the Colossus of Rhodes;
and the lighthouse of Alexandria.
-Dannie Abse, from "How I Won the Raffle"
An even earlier poem features 7 as a lucky number. Langston Hughes's "Addition [1]" ment on the addition of "love" to "luck"

Addition [1]

$7 \times 7+$ love $=$
An amount
Infinitely above:
7×7-love.
-Langston Hughes
Lewis Carroll's classic poem, The Hunting
Lewis Cark classic poem, The Hunting
numbers for an amusing mathematical effect. Do the math!
"Taking Three as the subject to reason aboutA convenient number to stateWe add Seven, and Ten, and then multiply out By One Thousand diminished by Eight.
"The result we proceed to divide, as you see, By Nine Hundred and Ninety and Two:
Then subtract Seventeen, and the answer must be Exactly and perfectly true.
-Lewis Carroll, from The Hunting of the Snark

Aesthetics and Structure

Poems rarely call on prime numbers for their visual appeal. A notable exception is William Carlo

The Great Figure

Among the rain
and lights
saw the figure 5
I saw the
in gold
firetruck
moving
tense
unheeded
to gong clangs
siren howls
and wheels rumbling
through the dark city
—Williams Carlos William
Williams's poem makes clear the aesthetic quality of the figure 5 he describes. American artist Charles Demuth's painting I Saw the Figure dia works based on the poem are available at the website Poems that Go (poemsthatgo.com).
More often, numbers contribute to the structure of a poem. Poetry's musicality depends not only on words but also on quantifiable structural elements, and formal poetry relies on counting: metrical feet, rhyme words, line length, number of lines in a stanza, number of stanzas in the poem and more. A certain amount of mathematical calculation, either for-
mal or intuitive, is involved in free verse as well. And some nontraditional poetic structures and procedures rely explicitly on the mathematical properties of prime numbers. One such technique employs the Fundamental Theorem of Arithmetic. To construct a poem using this theorem, you decide on the length of the poem and then number the poem's lines consecutively from bottom to top, starting at 2 . Then choose a word that stands for multiplication and a word that stands for exponentiaby prime numbers. Each line numbered with
 Charles Demuth (1883-1935) painted I Saw the Figure 5
in Gold in response to a William Carlos Williams poem.
a prime is a building block of the other lines, much like the prime numbers build the posistructure was Carl Andre's poem "On the Sadness." My poem, "13 January 2009," was also made using this approach. The form does not require the writer to note the mathematics that undergirds it, but in this instance the notation is part of the poem.
13

January 2009

$12=2^{2} \times 3$ Anuk is dying for Anuk is dying in the white of winter

The coldest month

$9=3^{2} \quad$ Anuk is dying in the falling snow
$8=2^{3}$ The white of winter for Anuk is dying
7 The drist of time the white of winter
$6=2 \times 3$ - The drift of time
5 The falling snow white of winter
$4=2^{2} \quad$ Anuk is dying for
The white of winter Anuk is dying

-Sarah Glaz

Here the word in stands for multiplication, and the word for stands for exponentiation. The poem is generated from the prime numbered lines- 2 , $3,5,7$, and 11 , which are written first-as follows: Factor each nonprime line number into a product of powers of distinct primes. For example, $12=$ $2^{2} \times 3$. The primes appearing in the number 12 , arranged in increasing order, are 2 and 3 . Line 2 is: Anuk is dying, and line 3 is: The white of winter. To construct line 12 , replace the number 2 with line and exponentiation with for. This makes line 12:

11 1001 1001 10008800000000888888000888888000880000880008888880008800008800888888880001 10008800000000008800008800008800880000880088000088008800008800000880000001 10008800000000008800008800000000888888880088000000008888888800000880000001 10008800000000008800008800888000880000880088008880008800008800000880000001 10008800000000008800008800008800880000880088000088008800008800000880000001 10008800000000008800008800008800880000880088000088008800008800000880000001 10008888888800888888000888888000880000880008888880008800008800000880000001 1001 10001
-Jason Earls
$\times 10^{1280}-$

Anuk is dying for Anuk is dying in the white of winter. The same procedure is used to generate each line of the poem. When the poem is read aloud, the echo created by the repetition of prime-numbered nes evokes an elegiac mood.
Another method involves the aesthetic manipulation of very large primes. Jason Earls's concrete prime poem, "Lighght Prime" (shown above) is based on Aram Saroyan's poem, "Lighght." (The history of this poem, which was first published, is worth looking up.)
Earls used zeroes and ones to create representation of the poem. The word "lighght" appears in the interior of a rectangular array of digits, all of which are 0 s and 1 s . Taking the digits of this rectangular array and placing them in the same order on a straight line creates a long number. Multiplying this number by 10^{1280}, and then subtracting 1 , yields a very large prime number. Verifying that this number is indeed prime involves the use of a computer program. matician, includes additional information on this poetic form and more concrete prime poems.
Yet another technique for constructing po Yet another technique for constructing pocalled the $n+7$ algorithm, was invented by the Oulipian poet Jean Lescure. The literary movement known as Oulipo-Ouvroir de Litterature Potentielle (Workshop of Potential Literature)was founded by Raymond Queneau in 1960 Its members invented constraints that generate literature; many of these constraints are mathe-
matical. The $n+7$ algorithm replaces each noun in a given poem with the seventh noun that follows in a specified dictionary. Mathematically, the procedure is a function on the set of nouns-one that "translates" each noun by 7 units. The results are often amusing. Computer programs make it easy to run this algorithm on onger texts, and to do so using numbers other han 7 . You can try out the procedure using a dictionary or at www.spoonbill.org/n+7/.
Whether they are invoked as lucky numbers,
mployed as generative constraints, or jus
auded in all their unruliness, primes in poetry lend both elegance and unpredictability. This dual nature-both exemplar and irritant-is amiliar to poetry lovers. "Stay non-conformist uisance," Spalding urges the primes. It's a directive that the best poems often follow as well.

Acknowledgment

An earlier version of this essay appeared as "The Poetry of Prime Numbers" in the Proceedings of Bridges Coimbra 2011, pp. 17-24. For permission to reprint their poems, we from The Collected Poems of Lansston Hughes, by Langston Hughes, edited by Arnold Rampersad with David Roessel associate editor, copyright 1994 by the estate of Langston Hughes. Used by permission of Alfred A. Knopf, a division of Random House, Inc. "The Great Figure," from The Colected Poems of William Carlos Williams, vol. 1, 1909-1939, by William Carlos Williams, is copyright 1938 by New Direc tions Publishing and is reprinted by permission.

\section*{Bibliography}
 Abse, D. 2000. Be Seated Thou. R The Sheep Meadow Press.
 Crandall, R. E., and C. Pomerance. 2005. Prime Numbers. a Computational Perspective New

 a Computational Perspective. New York: Springer.Earls, I. 2010 The Lorbrow Fwerinal Earls, J. 2010. The Lowbrow Experimental Mathematician
Raleigh, NC: Pleroma Publications. M 2005 Martin Gubrications Mat The 6 th Book of Matthematical Diversions (17971). Washing ton, DC: Mathematical Association of America. ", Glaz, S. 2010. "Poetry inspired by mathematics." Pro-
ceedings of Bridges Pécs, $35-42$. Glaz, S. 2011. "13 January 2009." Recursive Angel, MayJune.
Glaz, S., a
Glaz, S., and J. Growney, eds. 2008. Strange Attractors;
Poems of Love and Mathematics. London: CRC Press. AK Peters.
Hughes, L. . 1994 . The Collected Poems of Langston Hughes
New York: Vintage Books New York: Vintage Books
Jennings, E., ed. 1961. An. Anthology of Modern Verse
1940-1960. London. Methuen
Mueller, L. 1986. Second Language. Baton Rouge: Louisiana State University Press.
Saroyan, A. 2007. Complete Minimal Poesse oyan. New York: Ugly Duckling Presse.
Smith, D. E. 1958. History of Mathematics, volume II
Mineola NY:
Williams, W. C. 1985. Selected Poems. of Williams Carlos

The Music of Math Games

S
Earch onilne for video games and apps that claim to help your children (or yourself) learn mathematics, and you will be presented with an impressively large inventory of hundreds of titles. Yet hardly any surive an initial filtering based on seven, very basic pedagogic "no-nos" that any game developer should follow if the goal is to use what is potentially n extremely powerful educational medium to help people learn math A good woid learning game or app ,

Confusing mathematics itself (which is really a way of thinking) with its representation (usually
symbols) on a flat, static surface.
Presenting the mathematical activi ties as separate from the game ac tion and game mechanics.

- Relegating the mathematics to a secthary activity, when it should be he main focus.
Adding to the common perception the way of doing more enjoyable activities.
- Reinforcing the perception that math is built on arbitrary facts, rules and tricks that have no unified, underlying logic that makes sense.
- Encouraging students to try to answer quickly, without reflection.
ing that math is so intrinsically uninteresting it has to be sugar-coated

Of the relatively few products that pass through this seven-grained filter-

Keith Devin is a Stanford University mathematiKeith Devlin is a Stanforr University mathemai
cian and recently a founder of a small educational video-game studio. His company, InnerTube Games innertubegames.net) will release its first game, Wuzzit Trouble, in early March, and it woill be available initially for iPhone and iPad, with other platforms
to follow. He blogs at profkeithdevelin org and this article has been adapted from one of his blog series.

Keith Devlin

Video games that provide good mathematics

learning should

 look to the piano as a modelwhich means they probably at least don't do too much harm-the majority focus not on learning and understandas the multiplicative number bonds (or "multiplication tables"). Such games don't actually provide learning video game technology to take out of the classroom the acquisition of rote knowledge. This leaves the teacher more time and freedom to focus on the main goal of mathematics teaching, namely, the development of what I Many people have come to believe mathematics is the memorization of, and mastery at using, various formulas and symbolic procedures to solve problems. Such people typically have that impression of math because they have never been shown anything else. If mention of the word algebra automatically conjures up memorizing the use of the formula for solving a quadratic equation, chances are you had this kind of deficient school math education. For one thing, that's not algebra but arithmetic; for another, it's not at all representative of what alge-
bra is, namely, thinking and reasoning about entire classes of numbers, using logic rather than arithmetic.

What's in a Game?

So how to go about designing a good mathematics? The first step should be to read-several times, from cover to cover-the current "bible" on K-1 mathematics education. It is called Adding it Up: Helping Children Learn Mathematics, and it was published by the National Academies Press in 2001 The result of several years' work by ematics Learning Study Committee blue-ribbon panel of experts assembled to carry out that crucial millennial task, this invaluable volume sets out to codify the mathematical knowledge and skills that are thought to be importan in today's society. As such, it provide the best single source currently avail able for guidelines on good mathemat ics instruction.

The report's authors use the phrase mathematical proficiency to refer to the skills, developed abilities, habits o mind and attitudes that are essentia ingredients for life in the 21st century. They break this aggregate down to what they describe as "five tightly in terwoven" threads. The first is conceptuat understanding, the comprehension of mathematical concepts, operations and relations. The second is procedural fluen $c y$ defined as skill in carrying out arith ly, flexibly and appropriately. Third is strategic competence, or the ability to for mulate, represent and solve mathematical problems arising in real-world situations. Fourth is adaptive reasoning-the capacity for logical thought, reflection explanation and justification. Finally there's productive disposition, a habitua inclination to see mathematics as sen sible, useful and worthwhile, combined with a confidence in one's own abilit The authors stress that
to view these five that it is importan
to be dealt with one by one. Rather, they are different aspects of what should be an
integrated whole, with all stages of teaching focused stages of teaching
on all five goals.
So it's not that the crucial information about mathematics learning required to design good learning video games is not available - in a single, eminently readable source-it's that few people outside the math education ommunity have read it.

Combining Skills

The majority of video vide mathematics learning fail educationally for one of two reasons: Either their designers know how to design and create video games but know little about mathematics edupeople learn mathematics) and in many cases don't seem to know what math really is, or they have a reasonable sense of mathematics and have some familiarity with the basic principles of mathematics education,
but do not have sufficient experience in video game design. (Ac-
tually, the majority of math education tually, the majority of math education
games seem to have been created by individuals who know little more than how to code, so those games fail both educationally and as games.)
To build a successful video game requires an understanding, at a deep level, of what constitutes a game, how and why people play games, what keeps them engaged, and how they interact with the different platforms on which the game will be played. That is a lot of deep knowledge.
To build an engaging game that also supports good mathematics learning ing, at a deep level, what mathematics is, how and why people learn and do mathematics, how to get and keep them engaged in their learning, and how to represent the mathematics on the platform on which the game will be played. That too is a lot of deep knowledge.
In other words, designing and
building a good mathematics educa-

In the author's game, Wuzzit Trouble, the cute and fuzzy creatures must be freed from traps controlled by gearlike combination locks. Players
collect keys to open the locks by solving puzzles of varying difficulty. (Image courtesy of InnerTube Games.)
players in a single activity for long periods of time-al but a tiny number of games
(fewer than 10 by my count) (fewer than 10 by my count)
take advantage of another educationally powerful feaeducationally powerful fea-
ture of the medium: video games' ability to overcome games ability to symbol barrier.
Though the name is mine, the symbol barrier has been well known in math education circles for over 20 years and is recognized as the biggest obstacle to practical math. To understand the symbol barrier and appreciate how pervasive it is, you have to question the role symbolic expressions play in mathematics.
By and large, the public identifies doing math with writing symbols, often obscure symbols. Why do they make that automatic part of the explanation is part of the explanation is
that much of the time they that much of the time they
spent in the school mathspent in the school math-
ematics classroom was devoted to the development of correct symbolic manipulation skills, and symbol-filled books are the
tional video game-be it a massively multiplayer online game (MMO) or a single smartphone app-requires a
team of experts from several different disciplines. That means it takes a lot of time and a substantial budget. How much? For a simple-looking, casual game that runs on an iPad, reckon nine months from start to finish and a budget of $\$ 300,000$.
Following the tradition of textbook publishing, that budget figure does not include any payment to the au-
thors who essentially create the entire thors who essentialy create the entire the project's academic advisory board (which it should definitely have).

The Symbol Barrier

 Given the effort and the expense to make a math game work, is it worththe effort? From an educational perspective, you bet it is. Though the vast majority of math video games on the market essentially capitalize on just one eo games-their power to fully engage
standard mathematical to store and distribute gotten used to the fact that mathemat ics is presented to us by way of sym ics is presented to
But just how essential are those symbols? After all, until the invention of various kinds of recording devices, symbolic musical notation was the only way to store and distribute music yet no one ever confuses music with a musical score.
Just as music is created and enjoyed within the mind, so too is mathematics of us enjoyed) in the mind. At its heart of us enjoyed) in the mind. At its heart,
mathematics is a mental activity-a way of thinking-one that over several millennia of human history has proved to be highly beneficial to life and society.
In both music and mathematics, the symbols are merely static representa tions on a flat surface of dynamic mental processes. Just as the trained musi-
cian can look at a musical score and hear the music come alive in her or his
head, so too the trained mathematician can look at a page of symbolic
mathematics and have that mathematics come alive in the mind.
So why is it that many people believe mathematics itself is symbolic manipulation? And if the answer is that it results from our classroom experiences, why is mathematics taught that way? I can answer that second question. We teach mathematics symbolically because, for many centuries, most effective way to record mathematics and pass on mathematical knowledge to others.
Still, given the comparison with music, can't we somehow manage to break free of that historical legacy?
Though the advanced mathematics used by scientists and engineers is intrinsically symbolic, the kind of math important to ordinary people in their lives-which I call everyday mathemathead Roughly speaking everyday mathematics comprises counting arithmetic, proportional reasoning, numerical estimation, elementary geometry and trigonometry, elementary algebra, basic probability and statistics, logical thinking, algorithm use, problem formation (modeling), problem solving, and sound calculator use. (Yes, even elementary algebra belongs in that list. The symbols are not essential.)
True, people sometimes scribble
symbols when they do everyday math in a real-life context. But for the most part, what they write down are the facts needed to start with, perhaps the intermediate results along the way and, if they get far enough, the final answer at the end. But the doing-math part is primarily a thinking process-something that takes place mostly in your head. Even when people are asked to "show
all their work," the collection of symbolic expressions that they write down is not necessarily the same as the process that goes on in their minds when they do math correctly. In fact, people can become highly skilled at doing mental math and yet be hopeless at its symbolic representations.
With everyday mathematics, the symbol barrier emerges. In their 1993 book Street Mathematics and School Mathematics, Terezinha Nunes, David William describe research carried out in the street markets of Recife, Brazil, in the early 1990s. This and other studies have

KickBox uses a penguin character called Jiji that players must help get from one end of the corridor to the other. Players position beam-splitters and reflectors to direct lasers that knock out obstacles in Jiji's path. Solving such a puzzle provides excellent practice in mathematical
thinking, completely separate from the more familiar formulas, equations and dreaded "word thinking, completely separate from the more familiar formulas
problems." (Image courtesy of the MIND Research Institute.)
shown that when people are regularly symbolic expressions on flat surfaces faced with everyday mathematics in to store and distribute mathematica their daily lives, they rapidly master it to knowledge, that barrier has prevented an astonishing 98 percent accuracy. Yet millions of people from becoming pro when faced with what are (from a mathematical perspective) the very same problems, but present-
ed in the traditional symbols, their performance drops to a mere 35 to 40 percent accuracy.
It simply is not the case that ordinary people cannot do ev eryday math. Rather, they cannot do symbolic everyday math. In fact, for most people, it's not ac curate to say that the problems they are presented in paper-andpencil format are "the same as" the ones they solve fluently in a
real life setting. When you read the transcripts of the ways they solve the problems in the two settings, you realize that they are doing completely different things. Only someone who has mastery of symbolic mathemat ics can recognize the problems encountered in the two contexts as being "the same."
The symbol barrier is huge and pervasive. For the entire ics instruction, where we had no alternative to using static,

MotionMath is a Tetris-inspired game that uses the motion sensors in a smartphone or tablet t fractions to land on the right location on the number line. This game is an excellent introduction to
fractions for younger children fractions for younger children, as it connects the
abstract concept to tactile, bodily activity. (Image courtesy of MotionMath Games.)

In the math puzzle game Refraction, players learn about fractions and algebra. In this puzzle, the player has to split a laser beam a sufficient
number of times to game is olso designed to be all of the alifien on thaceships on the in an effreren. to capture data about what teaching methods and reward systems work best for students. (Image courtesy of the University of Washington.)
to the correct tempo. What the player does not do is go back to a simpler piano
(one with fewer keys, per(one with fewer keys, per-
haps?), nor do we design haps?), nor do we design
pianos that somehow be come easier to play. The piano remains the same; the player adjusts (or adapts) what they do at each stage. The instrument's design allows use by anyone, from a rank beginner to a concer virtuoso.
This lesson is the one we need to learn in order
to design video games to to design video games to
facilitate good mathematfacilitate good mathemat-
ics learning. For over 2,000 ics learning. For over 2,000 observed connections between mathematics and music. We should extend the link to music when it
nusic, but it takes a lot
of learning to be able to use ame for mathematics notation
The piano provides an interface to music that is native to the music, and hence far more easy and natural to use When properly designed, video games can provide interfaces to mathemati al concepts that are native to thos natural to use
Consider some of the reasons so many people are able to master the pi(initially poorly on simple tunes but initially poorly, on simple tunes, but very same instrument on Day 1 that the professionals use. You get a sense of direct involvement with the music. You get instant feedback on your performancethe piano tells you if you are wrong and how you are wrong, so you can gauge your own progress. The instructor is your guide, not an arbitrator of righ or wrong. And the piano provides true adaptive learning.
We read a lot
We read a lot today about adaptive learning, as if it were some new inven
tion made possible by digital technolo gies. In fact it is a proven method that goes back to the beginning of human learning
What's more, the proponents of today's digital version have gotten it all wrong, and as a result produce grossly inferior products. They try to use artifi cial intelligence so an educational delivery system can nod the delivery

Yet tens of thousands of years of evolution have produced the most adap-
tive device on the planet: the human tive device on the planet: the human system to adapt to a human's cognitive activity is like trying to build a cart that will draw a horse. Yes, it can be done, but it won't work nearly as well as building a cart that a horse can pull. The piano metaphor can be pursued further. There's a widespread belief that you first have to master the basic skills to progress in mathematics. That's total
nonsense. It's like saying you have to nonsense. It's like saying you have to formance of musical scales before you can start to try to play an instrument-a surefire way to put someone off music if ever there was one. Learning to play a musical instrument is much more enjoyable, and progress is much faster, if you pick up-and practice-the basic skills as you go along, as and when they become relevant and important to you. Likewise, for learning mathehave to be mastered, but rather it's how the student acquires that mastery that makes the difference. When a student le
piano is faced with a piece she or he cannot handle, the student (usually of his or her own volition) goes back and practices some more easier pieces before coming back to the harder one. Or perhaps the learner breaks the harder piece into bits, and works on each part,
comes to designing video games to help students learn math thinking of a video game as an instru-
ment on which a person can "play" mathematics.

A Mathematical Orchestra

 The one difference between music and math is that whereas a single piano an be used to play almost any tune a video game designed to play, say, addition of fractions, probably won' be able to play multiplication of frac tions. This means that the task facingthe game designer is not to design one the game designer is not to design one
instrument but an entire orchestra. Can this be done? Yes. I know thi fact to be true because I spent almost five years working with talented and experienced game developers on a stealth project at a large video game company, trying to build such an orchestra. That particular project was eventually canceled, but not because we had not made progress-we had de veloped over 20 such "instruments"velopment did not fit the company's velopment did not fit the company's A small number of us from that project A smaill number of us from that project our own company, starting from scratch to build our own orchestra.

In the meantime, a few other companies have produced games that fol low the same general design principles we do. Some examples include the Zoom, which use the motion sensors in
a smartphone or tablet to allow players ouzzle int directly with numbers. The puzzle game Refraction was produce in the Center for Game Science at the University of Washington, and was designed as a test platform that could be altered on the fly to see what teaching methods and reward systems work best for students learning topics such as fractions and algebra. DragonBox focuses on learning algebra in a puzzle where a dragon in a box has to be isolated on one side of the screen. KickBox uses ing lasers to get rid of obstacles for the game's penguin mascot-to learn math concepts. The same producer, the MIND Research Institute, also developed Big Seed, a game where players have to unfold colored tiles to completely fill a space. These games all combine the elements of math learning with game play in an effective, productive fashion. The game produced by my colleagues and me, because we were working in funded until early last year, has taken us three years to get to the point of reus three years to get to the point of re-
leasing. Available in early March, Wuzzit Trouble is a game where players must free the Wuzzits from the traps they've inadvertently wandered into inside a castle. Players must use puzzle-solving skills to gather keys that open the gearlike combination locks on the cages, while avoiding hazards. As additional rewards, players can give the Wuzzits in a "trophy room."
We worked with
Wevelopers to design Wuzzit Trouble as game that people will want to play purely for fun, though admittedly mentally challenging, puzzle entertainment. So it looks and plays like any other good video game you can play on a smartphone or tablet. But unlike the majority of other casual games, it is built on top of sound that anyone who plays it will be learning and practicing good mathematical ing and practicing good mathemaying a musical instrument for pleasure will at the same time learn about music. Our intention is to provide, separately and at a later date, suggestions to teachers and parents for how to use the game as a basis for more formal learning. Wuzzit Trouble might look and play like a simple arithmetic game, and indeed that is the puzzles carry star ratings, and I have yet

DragonBox challenges players to isolate the glittering box (containing a growling dragon) on on side of the screen. What they are doing is solving for the x in an algebraic equation. But there isn't an x to be seen in the early stages of the game. As the player progresses through the game, math-
ematical symbols start to appear, first as names for the objects, later replacing the object altogethe ematical symbols start to appear, first as names for the objects, later replacing the object altogethe This game demonstrates very clearly that solving an algebraic equation is not fundamentally about
manipulating abstract symbols, but is reasoning about things in the world, for which the symbols are just names. DragonBox provides a more user-friendly interface to algebraic equations-but its still algebra, and even young children can do it. (Image courtesy of We Want To Know Games.)
to achieve the maximum number of stars
on some of the puzzles! (I never mas-
tered Rachmaninov on the piano either.)
The game is not designed to teach. The
intention is to provide an "instrument"
hat, in addition to being fun to play, no only provides implicit learning but may also be used as a basis for formal learning in a scholastic setting. We learned al of these design lessons from the piano.

Slide Rules: Gone But Not Forgotten

Many of these well-made mechanical calculating aids have outlasted the engineers who knew how to use them, but they remain culturally pervasive.

Henry Petroski

I
n my recent column on paperweights (July-August 2016), I deCribed how the electrical engineer orked in a canoe afloat near his camp on a tributary of the Mohawk River, just outside Schenectady, New York, not far from the General Electric Research Laboamong the papers, pencils, and other objects on the board he set across the gunwales to serve as a desk was a set of tables of logarithms that he used in making calculations. I also described another photograph, showing Steinmetz at work at a table inside the rustic camp, noting the presence of a slide rule that I suggested he used when he did not require the highest precision in his calculations. Steinmetz worked at his Camp Mo-
hawk through the first two decades of the 20 th century The slide rule and logarithm tables he used eventually were superseded by desktop electromechanical calculators that were large, heavy, and expensive, making them practical investments only for large engineering firms such as General Electric. Tables of logarithms and the slide rules based on them remained in common use by independent engineers and students into the 1960s, and first-year engineering their theory, use, and application. The introduction in the 1970s of the handheld scientific calculator, at the time often referred to as an electronic slide rule, pretty much ended the era of both logarithms and the slide rule in calculations of all kinds, and by the 1980s the only engi-

[^1]neering students who even knew what a slide rule was tended to be the young relations of engineers and scientists, who had inherited a family "slip stick" and early in the current millennium the slide rule had been long forgotten in the back of bottom drawers, kept there largely for sentin ies ran or the por failed ies ran out or the power failed
Some especially nostalgic engineers early days of their career mounted it on the wall as if it were the first dollar they had earned in a small business enterprise that had succeeded. Not a few engineers who had advanced into senior management positions were known to keep a small slide rule in a top desk drawer, ready to be used to check the results of computer calculations that were
brought to them by their younger colleagues. Retired engineers with hairy ears often wore a working replica of a slide rule as a tie clip. Museum curators turned down donations of familiar slide rules because discarded models of the instruments had become so common and numerous in their collections.
Most slide rules outlasted the engineers that used them, in large part because they were so well made, carefully
used, and well maintained. Into the 1960s, first-year engineering students were advised to invest in a good slide were, because it was something they rule, because it was something they
would need and use for the rest of their engineering careers, and it was indeed expected to last that long. An investment of the order of $\$ 20$, a not insignificant sum at the time, bought a top-of-the-line model, such as a Keuffel and Esser Log Log Duplex Decitrig, whose mahogany body was faced with white celluloid were inscribed. A similar sum could also
buy a Versalog with a bamboo structure manufactured by the Frederick Pos Company, or an aluminum-bodied rule made by Pickett with its scales incised on a yellow background.
Instruments of Distinction
These precision mechanical analog computers were meant to be coddled, no get out of alignment. Each company's slide rule came with its own distinctive protective case, which was essentially a hard, boxlike sheath lined inside with soft material. The Keuffel and Esser was distinguished by its tan-orange case he Post by its dark brown one, and the Pickett by its lighter brown one. For the standard 10-inch student model rulethe size refers to the length of the scales he physical length of the rule was an
inch or so longer-all cases were fitted with a cover flap and a means of attaching the case to its owner's belt. The sight of a student wearing a slide rule scabbard was an almost sure sign that he was an engineering student (and most were male in the slide rule era)
As can be imagined from the variety of materials of which slide rules were made, each had a different look, feel and action. But they all were of pretty noveable slide from which the instrument took its name, was framed be ween a pair of fixed pieces known as stators, which were held together at thei ends by metal fixtures or, on smaller ver sions, within the track formed in a base part. Those models consisting of stators and slide were marked on both side with as many as a couple dozen scales which were the key elements by which numbers were manipulated for calculaally labeled A, B, C, and D, from top to

bottom. Calculations involving nonad jacent scales were aided by the presence inscribed on a glass or plastic windowlike device that could be slid from one end of the rule to the other
On a typical slide rule, the scales that are used most often are not arranged linearly, with the numbers equally spaced as they are on a measuring tape, but logarithmically, with the distance between, say, 1 and 2 being much greater than that between 8 and 9 . This lay out reflects the nature of a logarithm, number must be raised to give a target number. One familiar base number which arises ubiquitously in mathemat ical physics problems and calculations, is known as Euler's number in hono of the 18th-century physicist and eng neer Leonhard Euler (1707-1783), who designated it as e. The base of natural logarithms, e, is also known as Napier's constant, after the Scottish mathemati-
cian John Napier (1550-1617), who invented logarithms and also the calculating device known as Napier's bones, precursor to the slide rule.

So-called common logarithms are derived from the base 10, and the "loga$\log _{10} y$, or simply $\log y$, when the base 10 is understood. Thus $\log 100=2$ because $10^{2}=100$. The familiar slide rules used by engineers were based on base 10 logarithms, as can be seen on a rule containing C, D, and L scales. The L scale gives the logarithm of the numbers aligned with it on the C or D scale. Thus at the extreme right, both C and D scales read 10 , whereas the L scale reads 1.0 , which is the base-10 logarithm of 10
Because the rules for multiplying
and dividing logarithms are $\log (x \cdot y)$ $\log x+\log y$, and $\log (x / y)=\log x-\log y$, to multiply two numbers on a slide rule, the numbers should be added; in order to divide the first by the second, the numbers should be subtracted. This means that adding the distance x to the distance y on the C and D scales, respectively, produces the product $x \cdot y$. Subx gives the result of dividing x by y.
 be done easily by sliding the C scale along the D scale. With practice the op
eration was quick and accurate-but only to three or four significant digits. nately performed-not so quickly or easily, but much more accurately-by using a table of logarithms, which typically would record the logarithms of a number to many more significant dig its. Because each number has a unique logarithm, it could be determined once and for all to a large number of decimal places and entered into a table of
logarithms. It was a book of such tables logarithms. It was a book of such tables that Steinmetz took out with him in his tions to a very high degree of accuracy When the simpler computation of ad dition or subtraction of logarithms had been performed, the result's inverse logarithm-known as the antilogarithm or antilog-could be determined. Con rary to popular opinion, slide rule ubtraction of the number addition or

Slide Rule Predecessors
The true sliding rule was invented in bout 162 by the English mathematician William Oughtred (1574-1660),

the issue and make recommendations as to how all students might be put on a level footing when taking exams. As ing issues related to the new technology ing issues reok their time to reach a conclusion In the meantime, the price of handheld electronic calculators dropped precipitously, and before the study committees could issue their recommendations, the matter of manual versus electronic slide rules based on price had become moot. In any case, whether by using a traditional slip stick or an electronic version, numbers of any accuracy could be mul-
tiplied and divided much more quickly tiplied and divided much more quickly by punching keys on a keypad than by in a book of tables, adding or subtracting the numbers manually, and then looking up the antilog of the answer. In the former case, the precision of the result would generally be limited to three or four significant digits and, depending upon how carefully the markings on the sliding rules were made and the ability of the user to interpolate between the good enough-especially for initial or good enough-especially for initial or numbers are subject to revision anyway. When more accuracy was desired of a slide rule, one with longer scales could be used. Twenty-inch rules, designed to be used at a desk or drafting table, served this purpose. So did circular slide rules, because the length of their scales could be as much as three times (π times to be exact) the diameter of the device. more important than greater accuracy more important than greater accuracy,
and five-inch slide rules were commonly carried around among the pens and pencils packed into the shirt pockets or pocket protectors of busy engineers. A Picket five-inch pocket slide rule was taken to the Moon by Apollo astronauts. For many decades students were instructed in classrooms outfitted with a six-foot or longer working slide rule hung font and center over the blackciples and use were explained on this ciples and use were explained on this
large model. Instruction typically began with basic multiplication and division as done on the C and D scales, but instruction was also given in the use of several of the other straightforward scales, such as those used for calculating squares and cubes and taking square roots. Students were often left on their own, with their
slide rule's owner's manual to master others of the two dozen scales relevant
to their specific needs. The Log Log Duplex Decitrig, for example, had trigonometric scales with angles measured in tenths of a degree (hence the name slide rules more suited to, say electrical than mechanical engineering problems. than mechanical engineering problems. even more specialized.

A slide rule's cursor consists of a transparent plate inscribed with a thin line; it is help-
ful in aligning figures for calculations using scales that are not adjacent.

The fact that, on a slide rule, adding two marked lengths did not give the sum of the numbers, but the logbasis for a common shibboleth to separate initiated from uninitiated users of the slip stick. Furthermore, by writing numbers differing by orders of magnitude in scientific notation, say 3.784532×10^{6} and 0.097354×10^{6}, the numbers can be multiplied or divided using logarithms (or a slide rule), but

Without developing the skill of estimating orders of magnitude, engineers were not prepared to recognize when a computer's output was absurd.

is located is left to the judgment of the person doing the calculation. As long as the slide rule was in common use, ity. The engineer thus had to have at all times a sense of the expected magnitude of the answer to a calculation. Among the objections to the introductoutomatically located the decimal poit
in the answer, thereby not forcing en gineering students-and perhaps even mature engineers-ever to develop the This was not a orders of magnitude, out developing such a sense, engineer were not prepared to recognize when a calculator's or computer's answer was unreasonable, if not absurd. Whatever the electronic display or printout pro vided was taken as gospel and this total reliance on the machine could on oc casion lead to over- or underdesigned structures and systems, or to their failure. Not having a sense of magnitude be oblivious to the fact that units of feet were being used in place of meters-or were being used in place of metes
Even though they are no longer man Uven though they are no longer man-
ufactured by the likes of Keuffel and Esser, in the culture of engineering the slide rule remains pervasive. A slide rule appears on the logos of long-established engineering societies, ranging from the British Institution of Mechanical Engineers to the Institution of Engineers, Malaysia. Joe Miner, the mascot of the Missouri School of Mines (recently renamed
Missouri University of Science and Technology) carries a pickax in one hand and an outsize slide rule over his shoulder The engineer-writer Nevil Shute Norway, who wrote under his first two names only, titled his autobiography Slide Rule: The Autobiography of an Engineer. And at the University of Maryland, there is a long, low structure known as the "slide rule building," which was ar-
chitecturally designed to resemble the chitculating device in accordance with the wishes of its benefactor, Glenn L. Martin (1886-1955), the aviation pioneer and founder of the aircraft company headquartered in nearby Bethesda.
Although the slide rule may no nger be on every engineer's desk or drafting board, it remains embedded in the culture of the profession and serves as a symbol of what is at the root of enof stresses, strains, voltages, currents, flow rates, concentrations, lift, drag or whatever is relevant to the field be ing practiced, even as it has been superseded by the handheld calculator and digital computer, the slide rule ontinues to symbolize the engineer a work. It was certainly seldom far from Charles Steinmetz's reach, whether he was working at a desk at the Genera ectic Reseach Moratory or in his canoe at his Camp Mohawk.

In Defense of Pure Mathematics

After 75 years, Godfrey Harold Hardy's A Mathematician's Apology still fuels debate over pure versus applied mathematics.

Daniel S. Silver

\squareodfrey Harold Hardy was one of the greatest number heorists of the 20th century. Mathematics dominated his life, and only the game of cricket could compete for his attention. When advancing age diminished his crerobbed his physical strength, Hardy composed A Mathematician's Apology. It was an apologia as Aristotle or Plato would have understood it, a self-defense of his life's work.
"A mathematician," Hardy contended, "like a painter or poet, is a maker of patterns.... The mathematician's patterns, like the painter's or the poet's,
must be beautiful; the ideas, like the colours or the words, must fit together in a harmonious way." It was a personal and profound view of mathematics for the layman, unlike anything that had appeared before. The book, which this year reaches the 75th anniversary of its original publication, is a fine and most accessible description of the world of pure mathematics.
Ever since its first appearance, A Mathematician's Apology has been a lightning rod, attracting angry bols ics as being dull and trivial. The shaft that lit up the beginning of a review in the journal Nature by Nobel laureate and chemist Frederick Soddy was particularly piercing: "This is a slight book. From such cloistral clowning the

$$
\begin{gathered}
\text { world SICKens." } \\
H_{2 n d} \text { Sy's }
\end{gathered}
$$

world sickens."
Hardy's opinions about the worth of unfettered thought were strong, but

Daniel S. Silver is a research mathematician at the

 University of South Alabama. His research explores the relation between knots and dynamical systems, as well as the history of science and the psychologyof invention. E-mail: silver@southalabama.edu. Th is an extended version of the article that appeared in print and digital editions.
stated with "careful wit and controlled passion," to borrow words of the ac claimed author Graham Greene. They continue to find sympathetic readers in many creative fields. They were prescient at the time, and remain highly relevant today.

The Art of Argument
Hardy was born on February 7, 1877, in Cranleigh, Surrey. His parents val-
ued education, but neither had been able to afford university.
Hardy grew up to be a scholar, a sportsman, an atheist, and a pacifist, but above all, he was an individualist. In an obituary of him, the mathematician E. C. table in tennis clothes it was because he liked to do so, not because he had forgotten what he was wearing."

Portents of Hardy's interest in mathematics as well as his lack of an early age. In church his energies were usually directed toward factoring numbers on hymn boards rather than toward worship. But his attitude about religion went deeper than mere sinterest. According to Titchmarsch
Hardy always referred to God
as his personal enemy. This was, of course, a joke, but there was something real behind it. He took his disbelief in the doctrines of people seem to do. people seem to do.
Hardy exhibited his disbelief in odd ways. For example, he refused to en-
ter any religious building Mathematiter any religious building. Mathematician George Polya remembered that
whenever he and Hardy walked past a church, Hardy would be sure that Pólya was between him and the building. Pólya never knew the reason. Hardy began a famous collaboration
with analyst J. E. Littlewood in 1911 .

Two years later they would pore ove strange handwritten mathematical manuscripts that had been sent unsolicited by a young Indian civil servant, Srinivasa Ramanujan. Together they would decide that it was the work of a true ge-
nius. After considerable effort, Hardy nius. After considerable effort, Hardy University of Cambridge, where Hardy was a professor. The "one romantic inciwas a professor. The one romantic incihis discovery and collaboration with his young protégé, who tragically died of illness seven years later.
The atmosphere at Cambridge was nearly unbearable for Hardy during the World War I years of 1914 to 1918. Many of his friends and colleagues, including
Littlewood, had gone off to fight. Hardy was a pacifist but not a conscientious was a pacifist but not a conscientious only to be rejected on medical grounds. His deep regard for German culture and equally deep distrust of politicians compounded his emotions. In 1916 his pacifist friend Bertrand Russell was dismissed from his lectureship at Trin-
ity College of Cambridge for printing ity College of Cambridge for printing "statements likely to prejudice the re cruiting and discipline of His Majesty's
forces." Hardy felt quite alone. In 1919 Hardy moved to
University, where his eccentricities thrived, and he was again happy and productive. In his rooms he kept a pic ture of Vladimir Lenin. He shunned mechanical devices such as tele phones, would not look into a mirror, rarely allowed his photograph to be taken, and was very shy about meet ing people. Nevertheless, he was a superb conversationalist, able to carry on talk about many subjects (including, of
course, cricket). Titchmarsh recalled: course, cricket). Titchmarsh recalled: which he loved to play, and it was not always easy to make out what his real opinions were."

Pólya had a similar recollection "Hardy liked to shock people mildly by stating unconventional views, and he liked to defend such views just for the liked arguing."
It is clear that Hardy enjoyed teasing his audience, something one should keep in mind when reading A Math ematician's Apology.
The offer of the Sadleirian chair of pure mathematics at Cambridge was too great a temptation for Hardy. In 1931 he returned to the university by the River Cam, once home to Isaac Newton and James Clerk Maxwell. As his illness honors accumulated : the Chauvenet Prize from the Mathematical Association of America in 1932, the Sylvester Medal from the Royal Society in 1940. The Copley Medal from the Royal Society was to be presented to him on December 1,1942 , the day he died.
Work for Second-Rate Minds Many reviews of A Mathematician's Apology appeared during the first few The author of one such review, pub lished in The Spectator in 1940, was Graham Greene. Hardy must have been flattered to read: "I know no writingexcept perhaps Henry James's introductory essays-which conveys so clearly and with such an absence of fuss the excitement of the creative artist."
Other reviews were less enthusiastic. Today, as then, there are several
reasons to be offended by A Mathematician's Apology, especially if you are a scientist.
If you are the author of expository articles (such as this one), then you don't have to wait long for an insult to be hurled your way. Hardy's book began:
It is a melancholy experience for a professional mathematician to find himself writing about math-

The second edition of A Mathematician's Apology featured Hardy's now-iconic photograph on the dust jacket. For the first edition, Hardy sent postcards requesting that presenation copies be sent to colleagues including C.D. Broad and J.E. Littlewood, the physicis C. P. Snow, cricketer John Lomas (to whom he dedicated the book), and his sister Gertie. He also requested copies be sent to colleagues in the United States. (Postcards photogra,
ematics. The function of a math ematician is to do something to prove new theorems, to add to mathematics, and not to talk ticians have done. ...Exposition criticism, appreciation, is work for second-rate minds

Most reviewers pardoned Hardy fo this assertion. Félix de Grand'Combe, professor of French at Bristol UniverEducation in August 1943, the former French army officer exploded:

It really is a touching-albeit os tentatious-confession of a local that Prof. Hardy is a great mathematician. It is no less clear, from his own showing, that one can be a great mathematician and yet fail to understand things that are readily comprehensible to an or dinary, well-educated mind.
Artists resent art critics, musicians Artists resent art critics, musicians
scorn music critics. It is an ancient story, as Grand'Combe reminded readers in his lengthy review. However, he argued that observing and reformulating can be creative and illuminating acts:

When Linnaeus devised his wonderful classification of plants he didn't "make" anything, he merely
discovered a pre-existing treasure explaining and rendering percep ent relationships actually present in Nature, but his work altered and clarified our whole conception of

Nature, and The Mathematical Gazette He was an effective and enthusiastic textbook A Course in Pure Mathematics published in 1908 and still in print, is entirely expository.
"A mathematician, like a painter or poet, is a maker of patterns.... The mathematician's patterns... must be beautiful; the ideas, like the colours or the words, must fit together in a harmonious way."
the vegetable world; it gave in forming reason to apparent chaos, a dark welter of "non-being.

If Hardy thought that exposition, criticism, and appreciation is work for second-rate minds, then he mus have come to that conviction late in life. During his prime years, he wrote book reviews for The Cambridge Re view, The Times Literary Supplement

Greene and Grand'Combe had curiously different reactions to Hardy's mathematical calligraphy sampled on the dust jacket of A Mathematician Apology. While Greene found mystical allure in "the author's tiny algebraic Grand'Combe experienced nothing but incomprehension:

In a book whose jacket is illusrated by what, I presume, is a

Hardy (far right) and his protegé Srinivasa Ramanujan (center) are shown with co leagues at Cambridge University (below). Ramanujan send Hardy many theorem in letters (right), and worked closely with Hardy for five years on various aspects of
number theory, including highly composite numbers, which are positive integers with more divisors than any smaller positive integer. Ramanuian received a doctorate from Cambridge for this work in 1916. (Letters image courtesy of Ken Ono.)

he original printing of Hardy's book included nathematical calculations in the author's hand writing on the cover. Some reviewers found proachable for the layman. (Photograph courtesy of the author.)
sample of creative mathemati cal calculation, culminating in fore tha, wherein an array of interlaced with abundant pluses and minuses is locked in the cold embrace of at least three different kinds of brackets, Professor G. H. Hardy of Cambridge purports to address the layman.

If you are a biochemist in search of a cure for a dreadful disease, then you might be insulted by Hardy's sum three. intellectual curiosity profes sional pride (including anxiety to be satisfied with one's performance), and ambition. According to Hardy:
It may be fine to feel, when you have done your work, that you alleviated the sufferings of others, but that is not why you did it.
Writing in The News Letter in 1941, the English physicist and philosophe Hardy's assertions at face value. How ever, if a mathematician's principa motivation is to benefit himself rather han society, he asked "why should w provide ...so many more comfortable
jobs for mathematicians than for, say, poets or stamp-collectors?
Should you be an older mathema-
ician, you might be vexed by Hardy's reminder: "No mathematician should ever allow himself to forget that mathematics, more than any other art or science, is a young man's game." After observing that French died at 20, Ramanuian at 33 , and Ber nhard Riemann at 40 Hardy added: "I do not know an instance of a majo mathematical advance initiated by a man past fifty."
Cambridge University philosopher
C. D. Broad responded

To produce, as [Hardy] does, a list of persons who did supreme creative work in mathematics and then died young... is surely irrelevant. I suppose that the suppressed
premise is that the work which they did before their early deaths was so stupendously great that it is incredible that they should have equaled it if they had lived.

Examples of mathematicians who have made significant discoveries after the age of 50 can be given easily. Littlewood, who remained productive well after the age or 90, is one counteris common today among mathematicians. It is encouraged by the fact that
the Fields Medal, the highest award in mathematics, is awarded only for work done before the age of 40 .
If you are a scientist whose feathers are not yet ruffled, Hardy's main contention will surely disturb your plumage. "Real" mathematics, he argued, is almost wholly "useless" whereas useful mathematics is "intolerably dull." By real mathematics, Hardy meant pure and general and, in Hardy's opinion, has the most aesthetic value. Opposed has the most aesthetic value. Opposed
to it is the bulk of mathematics seen in school: arithmetic, elementary algebra, elementary geometry, differential and integral calculus, mathematics designed for computation and having the least aesthetic appeal.

Hardy was both prosecutor and defender in an imaginary trial to determin whether his life had been worthwhile

I have never done anything "use-
ful." No discovery of mine has made, or is likely to make, directly or indirectly, for good or ill, the least difference to the ame nity of the world....T have just of escaping a verdict of complete triviality, that I may be judged to have created something worth creating.
As more than one observer has noted, it is ironic that Hardy is perhaps most widely known for a discovery

It is ironic that Hardy, a believer in pure and "useless" mathematics, is best remembered by many for the Hardy-Weinberg Principle, which quantifies how the frequencies of genetic traits remain constant across generations, in the absence of mutations or other evolutionary
influences. Hardy was introduced to the problem by geneticist Reginald Punnett, with whom he played cricket. In a 1908 letter to Science, Hardy called his mathematical derivation of this problem "very simple." (Illustration by Barbara Aulicino.)

Hardy and analyst J. E. Littlewood, with whom he collaborated for many years starting in 1911. (Photograph courtesy of the University of Cambridge.)
about genetics. A theorem that he and Wilhelm Weinberg independently proved is well known today as the Hardy-Weinberg principle.
But for Hardy, who lived through two world wars, number theory prouseless to military planners. Hardy had opposed England's entry into the first World War, a deadly conflict made more so by science and technology. A Mathematician's Apology was firs published in 1940, when England was gain at war. Borrowing from his own article, "Mathematics in Wartime," published in the journal Eureka in 1940 Hardy wrote in Apology the same year hat Whatician may find in mathematics incomparable anodyne. For mathemat ics is, of all the arts and sciences the most austere and the most remote," According to Hardy, the mathem cian's world is directly linked to real ity. Theorems are non-negotiable. In contrast, he says, the scientist's reality is merely a model. "A chair may be collection of whirling electrons, or an dea in the mind of God," he declared merits, but neither conforms at losely to the suggestions of common sense." The pure mathematician nee not be tethered to physical facts. In Hardy's words: "'Imaginary' univers-
es are so much more beautiful than this stupidly constructed 'real' one. the world Soday, who had helped was disgunderstand radioactivity, his review in Nature, he said that if Nis review in Nature, he said that if

Hardy enjoyed teasing his audience, something one should keep in mind when reading A Mathematician's Apology.

Hardy were taken seriously, then the "real mathematician" would be a "religious maniac." Soddy added a rebuke

Surely in these times a little appreciation of the military virtues, rather than the conventional vilification of the profession of arms, is called for by religious people of all sorts, especially since their sort tom of the whole tragedy, and the chemist's bombs and poison-gas are such a heaven-sent whipping boy for their own.

Hardy was aware of Soddy's review. He might have been amused by it. A letter to him from R. J. L. Kingsford January 1941, concluded: "I quite agree that Soddy's amazing review in Nature is a most valuable advertisement. I enclose a copy of the review, herewith." The notion that mathematicians form a self-protected priesthood with their own religion was popular. It runs throughout Lancelot Hogben's Math ematics for the Million, a highly successful
book about mathematics that has sold book about mathematics that has sold
well since 1937. After condemning Pythagoras and Plato for their excessive fondness for abstraction, Hogben wrote:
The fact that mathematicians are often like this may be why they are so inclined to keep the high brotherhood to themselves.
In their reviews both Soddy and Broad suggested that Hardy's book might have been in part a response to
Hogben. Hogben criticizes Hardy in Mathematics for the Million, which adds credence to the theory.
Another condemnation of A Mathematician's Apology came from E. T. Bell, a mathematician and science fiction write who is best remembered for his 1937 book Men of Mathematics. In his review to "solemn young men who believe they have a call to preach the higher arithme tic to mathematical infidels." He concluded: "Congenital believers will embrace [Hardy's book] with joy, possibly as a compensation for the loss of their religious beliefs of their childhood."

It Won't Make a Nickel for Anyone Hardy had intended to publish A Mathematician's Apology with Cam pense. However, Press Secretary S. C Roberts recognized the value of the

90 -page essay, and endorsed it to the Syndics, the governing body of the Press. At meetings in July 1940, it was decided that 4,000 copies of A Mathematician's Apology would be printed.
The sale price would be 3 shillings, 6 pence each, roughly 8 pounds in today's British currency.
Postcards from Hardy requested that presentation copies be sent to colwood, the physicist Sir Arthur Eddington, chemist and novelist C. P. Snow, cricketer John Lomas (to whom he dedicated the book), and his sister Gertrude, with whom he was very close. He also requested copies be sent to colleagues in the United States.
A letter to him, dated May 29, 1941, is a reminder of the devastation being caused by the war: " "..copies which were being bound for a second shipment have action at one of our binders." ction at one of our binders.'
Additional printings of 2,500 copies Additional printings of 2,500 copies
were made in 1941. Another 2,000 copies were printed in 1948, the year following Hardy's death.
In June 1952, Hardy's sister wrote to the Press:

As A Mathematician's Apology is now impossible to get, both first hand and second hand, I expect hat you will in time be reprinting it; I think that it would be a good idea to have a photograph of my brother in it granted that it did not make it too expensive. enclosed photograph is an enlargement; it is an amateur snap and extremely characteristic.
The photograph that she sent would eventually appear on the dust jacket
of the second edition, and has become a well-known image of her brother wearing a white suit, seated in a wicker chair. Hardy, peering over his glasses, seems to be examining the photographer. Secretary R. W. David, who was now handling the project, replied to Gertrude enthusiastically. She wrote back a few days later: "I think that it is far the best ever taken of my brother." Reissuing A Mathematician's Apology
would be difficult. Inflation in Britain had made it impossible to reprint so small a book at a reasonable sales price. Some sort of material would be needed to extend it. The Rouse Ball Lecture, "Mathematical Proof," which

Hardy had delivered in 1928 was con sidered. So was "What is Geometry?" Hardy's Presidential Address to the Mathematical Association of America in 1925. Nothing seemed appropriate. In 1959, 11 years later, chemist and writer C. P. Snow suggested that he might write an introduction. It seemed a superb idea. Snow is best remem bered for his 1959 essay The Two Culflict between scientists and humanists He had advised Cambridge University Press during the war years. He also had been a close friend of Hardy, and had offered him advice about the book. However, Snow would not commit to a deadline. An internal memorandum from David in Septembe 1966 complained that "we have been chasing Snow for copy at roughly yearly intervals.
(now Lord Snow) had finished his (now Lord Snow) had finished his piece. Unfortunately, he had written it Macmillan in London and Scribner in New York would soon publish. In addition to Hardy's profile, it would include

Hardy leads a team of mathematicians in a cricket match, during a British Association meeting a and William Ferrar. (Photograph courtesy of the University of Oxford Mathematical Institute.)

Could the Syndics get permission to reprint Snow's article? Variety of Me vould also be seriaized in legal complication. The idea of finding anothe writer to introduce Hardy was consid ered but rejected. A privately printed pamphlet by Hardy on Bertrand Rus sell's dismissal from Trinity was also considered. David reported that "1t ing to the Apology.
ing to the Apology.
David's detern
Snow was undiministion to pursue 17, 1966, he wrote
We are agreed that our first choice is to persevere with the original plan. Snow's introduction is flusuch as might be given in a radio talk in commemoration of a gre man. Some may consider it shallow and may regret that the great man needs to be introduced by the les er. But... those who wish Hardy to be more widely appreciated mu honest populariser
A few days later, all the problem seemed to have been resolved. David wrote: "You will see from the Syndics"
minutes of 21 October that the way is now clear to proceed."
And then there was more trouble. Hardy's sister died, leaving all rights to Hardy's work to the London Mathematical Society. The Society objected to "filling out" A Mathematician's Apology with writing by anyone other than Hardy. In a memorandum dated January 3, 1967, and marked "Urgent," David noted that Cambridge University Press owned the copyright of the book "YI am sure," he added, "that the Syndics would not wish to ride rough-shod over the wishes of the [London Mathematical Society]. ... The project must for the moment be put absolutely on
of those secret, perfect works that makes most writing seem like mixture of lead and mush. It's the under-the-counter book we're touting this month. It has nothing to do with anything but the joy of life and mind. The price is $\$ 2.95$ and, with a title like that, it won' make a nickel for anyone

Physical Connections

The second edition of A Mathematician's Apology appeared as mathematics was becoming increasingly ab-
stract. Many mathematicians rejoiced at this change of direction in their field. Others lamented. If the trend

A line between pure and applied
 mathematics exists at most universities today. Too often it is a battle line, witnessing skirmishes over scant resources and bruised egos.

ice until I get a further reply from the London Mathematical Society."
Apparently an agreement was reached, and the second edition of A
Mathematician's Apology was in bookstores by the end of 1967. Snow's contribution added literary charm. It began:
It was a perfectly ordinary night at Christ's high table, except that Hardy was dining as a guest... This was 1931, and the phrase was not yet in English use, but in
later days they would have said that in some indefinable way he had star quality.
As Cambridge University Press anticipated, the new edition of A Mathematician's Apology was received well in the United States. Byron Dobell, an author and editor in New York who helped many young writers, including Tom Wolfe and Mario Puzo, seasoned his praise with a sprinkle of caution

It is the kind of book you wish was being read by all your friends at the very moment when you are reading it yourself. It is one
continued, some believed, mathemat ics would become irrelevant.

One mathematician who celebrated was University of Chicago professor Marshall Stone. His article "The Revolution in Mathematics," which first appeared in the journal Liberal Education
in 1961 and was reprinted the same year in American Mathematical Month$l y$, saw abstraction bridging areas of mathematics that had previously been isolated islands of thought. The idenargued, was greatly responsible:

Mathematics is now seen to hav no necessary connections with the physical world beyond the vague the statement that thinking takes place in the brain. The discovery that this is so may be said without exaggeration to mark one of the most significant intellectual advances in the history of mankind.
Stone noted a paradox: Increasing abstraction was spawning new applicaof genetics and game theory as well as
he mathematical theory of communications with contributions to linguistics. A very different opinion was ex pressed the following year in "Ap lied mathematics: What is needed IAM Review It was the transcript of symposium chaired by mathematician H. J. Greenberg. Its panel consist ed of mathematicians George Carrie, Richard Courant, Paul Rosenbloom, ticle with its embrace of abstraction was discussed with alarm. The pane members urged a more traditional vision of mathematics, one that draws its inspiration from science. Courant's warning sounded like a review of A Mathematician's Apology
We must not accept the old blas phemous nonsense that the ultimate justification of mathematical science is "the glory of the must not be allowed to split and diverge towards a "pure" and an "applied" variety
Despite Courant's warning, a line between pure and applied mathemat ics exists at most universities today Too often it is a battle line, witness ing skirmishes over scant resource and bruised egos. It is a line that ha mathematicians' widespread use of computers and technology's urgen need for sophisticated algorithms Mathematicians who share Hardy's sentiments might feel reluctant to express them in the face of soaring costs of higher education. Students with mounting debts have become increasingly impatient with teachers who digress from material directly trators drool over research grants in medicine and cyber-security while finding less filling the meage grants awarded in pure mathematics. The line between pure and applied mathematics might be blurred, but it will not soon be erased. As long as exists, G. H. Hardy's A Mathematician's Apology will be read and-usuallynjoyed. No finer summary can be ffered than that written by J. F. Ran dolph in his 1942 review:

This book is not only about math ematics, it is about ideals, art beauty, importance, significance,
young men, old men, and G. H thought about, talked about, criticized, and read again.

Acknowledgment

The author is indebted to Dr. Samuel Harrison, Editor (Mathematical Sciences), Cambridge University Press, and Dr.
Rosalind Grooms, Archivist Cambridge University Press, for arranging access to files related to Hardy and A Mathematician's Apology. Travel support was provided by a collaborative research grant by the Simon's Foundation. Thanks also to Dr. Susan G. Williams for her advice, technical help, and encouragement.

Bibliography

Bell, E. T. 1937. Men of Mathematics. New York: Simon and Schuste
Bell, E. T. 1942. Confessions of a mathemati-
cian (Review of G. H. Hardy A A Mathematician (Review of G. H. Hardy, A Mathemati-
cian's Apology). The Scientific Monthly $54: 81$. Broad, C. D. 1941 . Review of G. H. Hardy, AMatt ematician's Appology Philosophy 16:323-326

Cambriage University Press. Press Syndicate Cambridge University Library
Cambridge University Press. Author file: G. H. sity Library.
Carrier, G. F., R. Courant, P. Rosenbloom, C N. Yang, and H. J. Greenberg. 1962. What is needed in research and education: A sym
posium. SIAM Review $4: 297-320$.
Dobell, B. 1967. Review of G. H. Hardy, A Mathematician's Apology. Book World (a supple Grand'Combe, F. 1943. Review of G. H. Hardy A Mathematician's Ap
Education 175:369-370
Greene, G. 1940. The austere art (Review of G. H. Hardy, A Mathematician's Apology.) The
Spectator December 20:18. Grdy
ardyl, address to the Mathematical Association)
the
The Mat tha address so the Mathematical Association Hardy, G. H. 1929. Mathematical proof. Mind,
A Quarterly Review 38(149)1-25.
Hardy, G. H. 1940. Mathematics in wartime Hardy, G. H. 1940.
Hardy, G. H. 1940. A Mathematician's Apology.
Cambridge, UK: Cambridge University Press. Hardy, G. H. 1942. Bertrand Russell and Trinity.

Hogben, L. 1937. Mathematics for the Millio New York: W. W. Norton and Company. known. The American Mathematical Monthly 76:746-753.
Randolph, J. F. 1942. Review of G H Hardy Mathematician's Apology. The
ematical Monthly 49:396-397.
Snow, C. P. 1966. Variety of Men. New York
Charles Scribner's and Sons Soddy F. 1941. Oui S'Accuse
Soddy, F. 1941. Qui S'Accuse S'Acquitte (Re-
view of G. H. Hardy, A Mathematician' Apology). Nature 147:3-5.
Stone, M. 1961. The revolution in mathemat
ics. The American Mathematical Monthly ics. The Am
68:715-734.
titchmarsh, E. C. 1949. Godfrey Harold Hardy (1877-1947). Obituary Notices of Fellows of the

For relevant web links,
consult this issue of American Scientist Online:
https:// www.americanscientist org/magazine/issues/2015 november-december

What Our Readers Are Saying

Slicing Sandwiches, States, and Solar Systems

Can mathematical tools help determine what divisions are provably fair?

Theodore P. Hill

Gerrymandering is making case already before the case already before the partisan redistricting in Wisconsin, ing in the wings. At the core of the problem of redrawing congressional
districts is the issue of "fairness," and districts is the issue of "fairness," and that is tricky business indeed. The general subject of fair division has been studied extensively using mathematiproved very useful in practice for problems such as dividing estates or fishing grounds. For gerrymandering, however, there is still no widely accepted fair solution. On the contrary, this past October Pablo Soberón of Northeastern University showed that a biased cartographer could apply mathematics to gerrymander on purpose, without even using strange shapes for the districts. The underlying idea
traces back to one of mathematicians favorite theorems, which dates back to World War II.
The late 1930's were devastating years for the Polish people, but they were years of astonishing discovery
for Polish mathematicians. Between for Polish mathematicians. Between the rock of the Great Depression and the hard place of impending inva sion and occupation by both Nazi and Soviet armies, a small group of
mathematicians from the university in mathematicians from the university in
Lwów (today Lviv) met regularly in a coffee shop called the Scottish Café to

Theodore P. Hill is a professor e emeritus of mathemat- ics at Georgia I Is ics at Georgia Institute of Technology, and currently

 nic State University in San Luis Obispo. He received his PhD in mathematics from the University of Califorria, Berkeley. One of his hobbies is tracking down early American mathematics books, and the resulting collection now resides at the Bancroft Library at UC Berkeley. Website: http:/wwowexchange mathematical ideas. These deas were not the mathematics of then done with the aid of slide rulers) but rather were very general and esthetically beautiful abstract concepts, soon to prove extremely powerful in wide variety of mathematical and scientific fields.
The café tables had marble tops and could easily be written on in pen cil and then later erased like a slate tarned to ideas from previous meet ings, they soon realized the need for written record of their results, and purchased a large notebook for documenting the problems and answers The book, kept in a safe place by the café headwaiter and produced by him

The general subject of fair division has been studied extensively using mathematical tools, and some of that study has proven useful for problems such as dividing estates or fishing grounds.

upon the group's next visit, was a col ection both solved and unsolved ques decades later became known in inter

 national mathematical circles as the Scottish Book.he Ham Sandwich Proble roblem No. 123 in the book, posted by ugo Steinhaus, a senior member of the cafe mathematics group and a professor of mathematics at the Univer sity of Lemberg (now the University of
and cheese, be cut by a planar slice of a knife so that each of the three is cut tom of page 44.)

A Simpler Problem At the meeting where Steinhaus introduced this question, he reported that the analogous conclusion in two dimensions was true: Any two areas in a (flat) plane can always be simultaneously bisected by a single straight line, and he sabletop In the spirit of Steinhe 's food
"Given are three sets $\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3}$ located in the clidean space and with inite Lebesgue measure. Does there exist a plane cutting each of the three sets $\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3}$ into two parts of equal measure?"
To bring this question to life for his companions, Steinhaus rademark vivid examples, one that reflected the venue of their meetings, and also perhaps their mminent preoccupation with daily essentials: Can every ordinary ham sandwich consisting of
theme, let's consider the case where the two areas to be bisected are the crust and sausage on a pepperoni pizza. If the pizza happens to be a perfect circle, then
every line passing through its center will exactly bisect the crust.
To see that there is always a line that will bisect both crust and sausage simultaneously, start with the potential cutting line in any fixed direction, and rotate it about the center slowly, say clockwise. If the proportion of sausage on the clockwise side of the arrow-cut happened to be 40 percent when the ro-
tation began, then after the arrow-cut has rotated 180 degrees, the proportion has rotated 180 degrees, the proportion
on the clockwise side of the arrow-cut is now 60 percent. Because this proportion changed continuously from 40 percent to 60 percent, at some point it must have been exactly 50 percent, and at that point both crust and sausage have been exactly bisected. (See the figure at the top of page 45.) the pizza is not a perfect
\qquad circle, as no real
pizza is, then pizza is, then
there may
not be an not be an
exact center point such
that every straight line

The Salem Gazette published this cartoon in 1813 with the title "The GerryMander," stating that the district had been "formed into a monster!" by
partisn divisioning. The shape was likened to a salamander, and the term partisan divisioning. The shape was likened to a salamander, and the term
came from blending that word with the last name of the Massachusetts govcame from blending that word with the last name of the Massachusetts gov-
ernor at the time, Elbridge Gerry. Mathematical theories can possibly help ernor at the time, Elbridge Gerry. Mathematical theories can possibly help
with fair divisioning, but if misappropriated, can instead increase problems.
hrough it exactly in this general noncircular case, again move the cuttin line so that it always bisects the crust as it rotates, and note that even though the cutting line may not rotate around a single point as it did with a circular pizza, the same continuity argument applies. If the proportion clockwise of the north cut started at 40 percent, then when the cut arrow points south, that proportion will be 60 gument using the simple fact that to go continuously from 40 to 60 , one must pass through 50 . This simple but pow erful observation, formally known as the Intermediate Value Theorem, also explains why if the temperature outside your front door was 40 degrees Fahrenheit yesterday at noon and 60 degrees today at noon, then at some time in between, perhaps several times, the temperature must have been ex ctly 50 degrees.
(pizza) version of two-dimensional (pizza) version of the ham sandwich
theorem that may be used for gerrymandering. Instead of a pizza, imagine a country with two political parties whose voters are sprinkled through it in any arbitrary way. The pizza theorem implies that there is a straight line bisecting the country so that exactly half of each party is on each side of the line. Suppose, for example, that 60 percent of the voters in the United States are from party Purple Then there is a single straight line dividing the country into two regions, each of which has exactly 30 percent of the Purple on each side, and exactly 20 percent of the Yellow on each side, so the Purple have the strict majority on both sides. Repeating this procedure to each side yields four districts with exactly 15 percent Purple and exactly 10 percent
Yellow in each. Again the majority party (in this case Purple) has the majority in each district. Continuing this argument

shows that whenever the number of desired districts is a power of two, there is always a straight-line partition of the that the majority party also has the ma jority of votes in every single district. (See the map on page 46 .)
This repeated-bisection argument may fail, however, for odd numbers of desired districts. Sergei Bespamyatnikh, David Kirkpatrick, and Jack Snoeyink of ever found a generalization of the ham sandwich theorem that does the trick for

ber of polygonal districts so that each district has exactly the same number of Purple, and exactly the same numthe overall majority in the country will also have the majority in every district. Thus, as he found, a direct application of ham sandwich theory would not help fix the problem, but would actually make it worse, and the electorate should be wary if the person drawing congressional map nonder the Supreme Court balked
all three of the most recent cases it has heard on partisan gerrymandering.
The Scottish Café
After giving his argument for the twodimensional case of the ham sandwich
theorem, Steinhaus then challenged his companions to prove the 3 -dimen sional version. The same basic Intermediate Value Theorem argument of continuity that worked for the pizz theorem will not settle the "ham sand wich" Problem 123 question, simply because there is no single "direction to move a given starting plane passing through the sandwich, guaranteeing sected both of two other objects some where along the way
Two gifted students and prote gés of Steinhaus, Stefan Banach and Stanisław Ulam, were also members of the Scottish Café group. Using a discovery Ulam had made around the same time with Karol Borsuk, another Scottish Café comrade, Banach was able to prove the sandwich conjecproof, called the Ulam-Borsuk Theoprom, was another general continuity theorem similar in spirit to the Intermediate Value Theorem, but much more sophisticated. Steinhaus also brought that abstract theorem to life with another of his colorful real-life examples: the Ulam-Borsuk Theorem, he said, implies that at any given moment in time there are two antipodal points on the Earth's surface that have he same temperature and tmospheric pressure.
objects, or more than two regions in the plane, then it may not be possible to bisect all of them simultaneously with a single plane (or line), as can easily be seen in the case where four small balls are located at the vertices of a pyramid. Also the conclusion of bisection cannot generally be relaxed. For example, if your goal is to split a pieces so that one side contains exactly 60 percent of each, that may not always be possible. (See the figure at the bottom of page 47.)

Members of the Scottish Café mathemati cians who worked on the ham sandwic heorem in two and three dimensional ca es included (clockwise from top left) Hugo
Steinhaus, Stanistaw Ulam, Stefan Banach, and Karol Borsuk.

If a pizza is a perfect circle, then every line through the center will bisect the crust. If the cut started with 40 percent of the sausage in the direction of the arrow, after rotating 180 degrees, 60 percento the sausage will be in the direction of the arrow. So somewhere in between, the line will hit 50 per cent and the same cutting line will bisect both crust and sausage. If the pizza is not a perfect circle -bisecting lines may not all pass through the same point, but the same argument applies.

According to the two-dimensional (pizza) version of the ham sandwich theorem, there is a straight line across the United States so that exactly half of the Purple and half of the Yellow party voters are on either side (top). Bisecting each of those (bottom), the same argument shows that there are four regions with equal numbers of Purple and equal numbers of Yellow in each of them. Thus the party with the overall majority also has the majority in each of the districts.

Generalizations

During World War II, the statement of this colorful and elegant new mathematical result-that any three fixed objects simultaneously can be bisected by a single plane-somehow made it through enemy territory and across the phones or Skype. Mathematicians Arthur Stone and John Tukey at Princeton University learned about this new gem of a theorem via the international mathematics grapevine, and improved the result to include nonuniform distributions, higher dimensions, and a variety of other cutting surfaces and objects. The new Stone and Tukey extensions also showed, for example, that a single
volving indivisible points (professors, in that case), I wondered whether the conclusion of the ham sandwich theoem might be extended to also include points-such as grains of salt and pep per sprinkled on a table-by replacing the notion of exact bisection of distributions by a natural generalization of the statistical notion of a median.
Recall that a median of a distribu tion, say of house prices in a neighborhood, is a price such that no more than half of all the house values are below and no more than half are above that price. Extending this notion to highe dian lines, median planes, and median hyperplanes in higher dimensions. Us ng the Ulam-Borsuk Theorem again, but this time applied to a differen "midpoint median" function, it was traightforward to show that for any two arbitrary random distributions in the plane, or any three in space, there always a line median or plane medi n, respectively, that has no more than Some 20 years later Columbia Uni versity economist Macartan Hum phreys used this result to solve problem in cooperative game theory n a setting where several group must agree on allocations of a fixed resource (say, how much of a given disaster fund should be allocated to medical, power, housing, and food), the objective is to find an allocation hide in favor of coatition could over showed that such equilibrium allocations exist precisely when they lie on "ham sandwich cuts."

Touching Planes

In explaining the beauties of the ham sandwich theorem to nonmathematician friends over beer and pizza, one of my companions noticed that often there is more than one bisecting line (or plane), and we saw that some bisecting whereas others may not. I started look ing at this observation more closely and discovered that in every case, I could always find a bisecting line or plane tha touched all the objects. When I could not find a reference or proof of this concept, I posed the question to my Georgia Tech friend and colleague John Elton, who had helped me crack a handful o other mathematical problems: Is ther always a bisecting plane (or hyperplane
in dimensions greater than 3) that also touches each of the objects?
Together, he and I were able to show that the answer is yes, which strengthens the conclusion of the classical ham sandwich theorem. For example, this improved version implies that at any is always a single plane passing through three bodies-one planet, one moon, and one asteroid-that simultaneously bisects the planetary, the lunar, and the asteroidal masses in the Solar System. (See the figure at the bottom of page 48.)

Diverse Divisions

The ideas underlying the ham sandwich theorem have also been used in diverse fields, including computer scigame theory When I asked my friend Francis Su, Harvey Mudd College mathematician and fair-division expert, about his own applications of the ham sandwich theorem, he explained how he and Forest Simmons of Portland Community College had used ham sandwich results to solve problems in consensus-halving. In particular, they used it to show that given a tern different specialties (two zoologists, two botanists, two archeologists, etc), there always exists a way to divide the territory into two regions and the people into two teams of n explorers (one of each type) such that each explorer is satisfied with their half of the territory.
As a more light-hearted application during a keynote lecture at Georgia Tech, Tel Aviv University mathematician Noga Alon described a discrete for splitting a necklace containing various types of jewels, as might be done, he said, by mathematically oriented thieves who steal a necklace and wish to divide it fairly between them. Even though it had been offered as an amusement, his result had applications, including to VSLI (Very Large Scale Integrated) circuit designs where an integrated chip composed of two different types of nodes is manufac(much like a necklace) and may be restructured after fabrication by cutting and regrouping the pieces. Alon's theorem answers this question: How many cuts need to be made of the original circuit in order to bisect it into two parts, each containing exactly half of each type of node?

For odd numbers of desired districts, the repeated-bisection argument of the two-dimensional version of the ham sandwich theorem may fail. However, a generalization of the theoren works for any number of districts, by showing that for a given number of Purple or Yellow into any given number of convex polygons, each of which contains exactly the same numb of Yellow, and the same number of Purple, points.

Revisiting the Cafe
Steinhaus published the proof of the hish sandwich theorem in the local Polska in 1938, the year of Mathesis Polviolent Kristall nacht The Scottish Café mathematics gatherings continued for a few more years, despite the invasion and the Soviet occupation of Lwów from the east, but the difficult times would soon disperse both scholars and their works. Ulam, a young man in his roots had left with his brother on a ship roots, had left with his brother on a ship for America just

Banach, nearing 50 and already widely known for his discoveries in mathematics, was appointed dean of he University of Lwów's departmen of mathematics and physics by the oviets after they occupied that city o learn Ukrainian. When the Nazis in turn occupied Lwów, they closed the universities, and Banach was forced o work feeding lice at a typhus re search center, which at least protected im from being sent into slave labo Banach, like many others, was made wear cages of lice on his body, so they could feed on his blood. The lice which are carriers of typhus, were

It is not always possible to bisect simultaneously more than three objects with a single plane (such as points at the corners of a pyramid, shown at left), nor to separate simultaneously thre
 cannot be cut by a straight line so that exactly 60 percent of the crust and 60 percent of the sausage are on the same side of the line
(original publication January-February 2018) Pi Day: A Celebration of Mathematics

Mathematicians Arthur Stone and John Tukey of Princeton University extended the ham sandwich theorem to nonuniform distributions, higher dimensions, and a variety of other cutting surfaces and objects. One of their examples showed that a single circle simultaneously can bisect ny three shapes in the plane. For instance, it is always possible to design the power and location of a teleconmmunications half the Teal (Independents).
used in research efforts to create a vac-
used in research efforts to create a vacable to help reestablish the university after Lwów was recaptured by the Soviets in 1944, but died of lung cancer in 1945.
Although the correct statement of the crisp ham sandwich theorem had made it through the World War II mathematical grapevine perfectly, was garbled en route, and Stone and Tukey mistakenly attributed the first
ome bisecting lines or planes may touch each of the objects, whereas others may not, as shown on the pizza below. Nevertheless, there is always a single bisecting line or plane
(or hyperplane, in higher dimensions) that touches all of the objects. For example, at any instant in time in our Solar System there is always a single plane passing through three bodies-one planet, one moon, and one asteroid-that simultaneously bisects the planetary, the lunar, and the asteroidal masses in the Solar System.
proof to Ulam. Sixty years later the record was set straight when a copy Polska was finally tracked down, and we now know that Steinhaus posed the problem and published the first paper on it, but it was Banach who actually solved it first, using a theorem of Ulam's

Today Banach is widely recognized fluential mathert inpor century, and many fundamental theo- terminy auction system, which de termes how much you pay-often below your maximum bid-are direct tion and allocate portions of a single heterogeneous commodity, such as a cake or piece of land, among several people with possibly different values. One of Steinhaus's key legacies was his insight to take the common vague concept of "fairness" and put it in a natural and concrete mathematical framework. From there it could be analyzed logically, and has now evolved into common and powerful Spliddit, which provides free math matical solutions to complicated everyday fair division problems from yday fair division problems from

rems, as well as entire basic fields of mathematics, that are based on his work are now among the most ex mathematics. mathematics
the key scientists on the Manhattan the key scientists on the Manhattan
Project in Los Alamos, achieving fame in particular for the Teller-Ulam thermonuclear bomb design, and for his invention of Monte Carlo simulation, a ubiquitous tool in economics, physics, mathematics, and many other areas of science, which is used to estimate in tractable probabilities by averaging the results of huge numbers of co
simulations of an experiment.
After the war, Steinhaus would have been welcomed with a profeshave been welcomed with a profesthe world, but he chose to stay in Poland to help rebuild Polish math ematics, especially at the university in Wrocław, which had been destroyed during the war. During those years in hiding, Steinhaus had also been breaking ground on the mathematics of fair
division-the study of how to parti-

Twisted Math and Beautiful Geometry

Four families of equations expose the hidden aesthetic of bicycle wheels, falling bodies, rhythmic planets, and mathematics itself.

Eli Maor and Eugen Jost

Spira Mirabilis

O
the numerous mathematical curves we encounter in art, geometry, and nature, perhaps none can match the exquisite elegance of the logarithmic
This famous curve appears, with remarkable prespiral. This famous curve appears, with remarkable pre-
cision, in the shape of a nautilus shell, in the horns of an cision, in the shape of a nautilus shell, in the horns of an
antelope, and in the seed arrangements of a sunflower. It is also the ornamental motif of countless artistic designs, rom antiquity to modern times. It was a favorite curve of the Dutch artist M. C. Escher (1898-1972), who used it in some of his most beautiful works, such as Path of Life II.
The logarithmic spiral is best described by its polar equation, written in the form $r=e$, where r is the distance rom the spiral's center O (the "pole") to any point P on the curve, θ is the angle between line $O P$ and the x-axis, a is a e is the base of natural logarithms. Put differently, if we increase θ arithmetically (that is, in equal amounts), r will increase geometrically (in a constant ratio).
The many intriguing aspects of the logarithmic spiral all derive from this single feature. For example, a straight line from the pole O to any point on the spiral intercepts it at a constant angle α. For this reason, the curve is also known as an equiangular spiral. As a consequence, any secto with given angular width $\Delta \theta$ is similar to any other sector mall it is. This property is manifested beautifully in the nautilus shell (right). The snail residing inside the shell gradually relocates from one chamber to the next, slightly larger chamber, yet all chambers are exactly similar to one another: A single blueprint serves them all.
The logarithmic spiral has been known since ancient times, but it was the Swiss mathematician Jakob Bernoull (1654-1705) who discovered most of its properties. Bernoulli was the senior member of an eminent dynasty of mathematicians hailing from the town of Basel. He was on enamored with the logarithmic spiral that he dubbed tombstone after his death. His wish was fulfilled, though not quite as he had intended: For some reason, the mason engraved a linear spiral instead of a logarithmic one. (In a inear spiral the distance from the center increases arith-metically-that is, in equal amounts-as in the grooves of a vinyl record.)The linear spiral on Bernoulli's headstone can still be seen at the cloisters of the Basel Münster, perched high on a steep hill overlooking the Rhine River. But if a wrong spiral was engraved on Bernoulli's tombstone, at least the inscription around it holds true: Eadem mutata resurgo- Though changed, I shall arise the nique curve. Stretch it rotate it, or invert it, it alway stays the same.

Notes

This angle is determined by the constant a; in fact, $\alpha=\cot ^{-1} a$. In the special case when $a=0$, we have $\alpha=90^{\circ}$ and the spiral becomes the
unit circle $r=e^{0}=1$. For negative values of a, the spiral changes its orientation from counterclockwise to clockwise as θ increases. For more on the logarithmic spiral, see Maor, e : The Story of a Number
chapter 11. $\complement^{\text {a }}$

A nautilus shell, cut in half to reveal its chambers.

In a logarithmic spiral, a straight line drawn outward from the center always intercepts the spiral at a constant angle.

Rivaling the logarithmic spiral in elegance is the cycloid, the curve traced by a point on the rim of a circle that rolls along a straight line without slipping (right). The cy-
cloid is characterized by its arcs and cloid is characterized by its arcs and stant when the point on the wheel's rim reaches its lowest position and stays momentarily at rest.
The cycloid has a rich history. In 1673, the Dutch physicist Christiaan Huygens (1629-1695) solved one of the out-17th-century scienstists: to find the curve down which a particle, moving only under the force of gravity, will take the under the force of gravity, will take the
same amount of time to reach a given final point, regardless of the initial position of the particle. This problem is known as the tautochrone (from the Greek words meaning "the same time"). To his surprise, Huygens found that the curve is an arc of an inverted cycloid. He tried to capitalize on his discovery
by constructing a clock whose pendulum was constrained to swing between two adjacent arcs of a cycloid, so that

When a circle rolls along a straight line, the path traced by any given point on the outer edge of the circle takes the form of a cycloid.
the period of oscillations would be independent of the amplitude. (In an ordinary pendulum this condition holds only approximately.) Unfortunately, although the theory behind it was sound the performance of Huygens's clock fell Short of his expectations.
Shortly thereafter, the cycloid made history again. In 1696 Johann Bernoulli (1667-1748), the younger brother of Ja-
kob (of logarithmic spiral fame), posed this problem: to find the curve along which a particle, again subject only to
he force of gravity, will slide down in he least amount of time. You migh line connecting the initial and final po sitions of the particle, but this is not so: Depending on the path's curvature, the particle may accelerate faster at one point and slower at another, showin hat the path of shortest distance be ween two points is not necessarily the path of shortest time
Known as the brachistochron
two adjacent arcs of a cycloid, so that which a particle, again subject only to ("shortest time"), this problem was
attempted by some of the greates minds of the 17th century, including Galileo, who incorrectly though the required path is an arc of a cir were submitted-by Isaac Newton, Gottfried Wilhelm Leibniz, Guillaume de L'Hospital (famous for a rule in calculus named after him), and he Bernoulli brothers, who worked on the problem independently and used different methods. To their surprise, the curve turned out to be an inverted cycloid-the same urve that solved the tautochron problem. But instead of rejoicing in came embroiled in a bitter priority dispute, resulting in a permanent rift between them. The cycloid had prises in store. Evangelista Torricelli 1608-1647), inventor of the mercury barometer, is credited with finding the area under one arc of the cycloid The area turned out to be $3 \pi a^{2}$, where a is the radius of the generating cir Wren (1632-1723), London's venerble architect who rebuilt the city fter the Great Fire of 1666 , dete mined that the length of each arc is Ba; surprisingly, the constant π is not involved. This was one of the first uccessful rectifications of a curvefinding the arc length between two points on the curve. With the inven on of calculus in the decade 1666 676, such problems could be solved they presented a challenging task Reflections on a Rolling Wheel (left) hows the path of a luminous poin attached to a rolling wheel at three different distances from the cener. At top, the point is outside the wheel's rim (as on the flank of ailroad car wheel); at the middle, it is exactly on the rim; and at the bot om, inside of it. The top and botom curves are called prolate and he middle curve is the ordinary ycloid You can see the curtate variant at night as the path traced by the reflector on a bicycle wheel while the cyclist moves forward.

Note
For a full history of the cycloid, see the ar-
ticle "The Helen of Geometry" by John
Martin, The College Mathematics Journal
Martin, The College Mathematics
(September 2009, pp. 17-27). ©

An epicycloid (blue dotted lines) is the path traced by a circle as it rolls along the outer edge of another circle. The path of Venus, seen from Earth, appears as a prolate epicycloid (red dotted lines).

Epicycloids and Hypocycloids

W $T^{\text {hereas the cycloid is gener- (see next page). Thus, two circles with ra- }}$ ated by a point on the rim dii in the ratio 2:1 can be used to draw of a wheel rolling along a straight line, a related type of curve
arises from a wheel rolling on the outarises from a wheel rolling on the out-
side of a second, fixed wheel. The reside of a second, fixed wheel. The resulting curve is an epicycloid (from "above"). Alternatively, we can let the wheel roll along the inside of a fixed wheel, generating a hypocycloid (hypo $=$ "under"). The epicycloid and hypocycloid come in a great variety of shapes, depending on the ratio of the radii of the two wheels. Let the radii
of the fixed and moving wheels be R of the fixed and moving wheels be R
and r, respectively. If R / r is a fraction and r, respectively. If R / r is a fraction in lowest terms, say m / n, the curve will completely traced after n full rotations around the fixed wheel. If R / r is not a fraction-if it is irrational-the curve will never close completely, although it will nearly close after many rotations. For some special values of R / r the ensuing curves can be something of a
surprise. For example, when $R / r=2$, surprise. For example, when a straight-line
the hypocycloid becomes a segment: Each point on the rim of the olling wheel will move back and forth along the diameter of the fixed wheel
a straight-line segment! In the 19th century this type of curve provided a potential solution to a vexing problem: how to convert the to-and-fro motion of the piston of a steam engine into a rotational motion of the wheels. It was
one of many solutions proposed, but in one of many solutions proposed, but in
the end it turned out to be impractical. When $R / r=4$, the hypocycloid becomes the star-shaped astroid (from the Greek astron, a star). This curve has some interesting properties of its own. Its perimeter is $6 R$ (as with the cycloid, this value is independent of π), and the area enclosed by it is $3 \pi R^{2} / 8$, that is, threeeighths the area of the fixed circle. Imagine a line segment of fixed length with its endpoints resting on the x - and y -
axes, like a ladder leaning against a wall. axes, like a ladder leaning against a wall.
When the ladder is allowed to assume all possible positions, it describes a region possible positions, it describes a region shows that a curve can be formed not only by a set of points lying on it, but also by a set of lines tangent to it.
Turning now to the epicycloid, the case in which the fixed and the moving wheels have the same radius ($R / r=$ 1) is of particular interest: It results in a

Epicycloids and hypocycloids (red lines) can take a variety of forms, depending on the size and position of the rotating circle relative to the fixed circle.
cardioid, so called because of its heart-shaped form. This romantic curve has a perimeter of $16 R$ and its area is $6 \pi R^{2}$
The Greek astronomer Claudius Ptolemaeus, or Ptolemy (ca. 85-165 C.E.), invoked epicyclic motion in an attempt to explain the occasional retrograde moal west to east. He ascribed to them a complex path in which each planet moved along a small circle whose center moved around Earth in a much larger circle The resulting epicycle has the shape of a coil wound around a circle. When this model still failed to account for the positions of the planets accurately, more epi cycles were added on top of the existing ones, making the system increasingly cumbersome. Finally, in 1609, Johannes Kepler discovered that planets move around the Sun in ellipses, and the epicycles were laid to rest.
The illustration on page 143 shows a five-looped epicycloid (blue) and a prolate epicycloid (red) similar to Ptolemy's planetary epicycles. This latter curve closely resembles the apparent path of Venus against the backdrop of the fixed stars. Earth and Venus follow an eight-year cycle during which the two planets
and the Sun will be aligned almost perfectly five times. Surprisingly eight Earth years also coincide with 13 Venusian years, locking the two planets in an 8:13 celestial resonance and giving Fibonacci aficionados one more reason to celebrate

Notes

We might mention in passing that the astroid has the unusual rectangular equation $x^{2 / 3}$
$y^{2 / 3}=R^{2 / 3}$.
For nice simulations of how these curves are generated, go to http:// mathworld.wolfram.
com/Hypocycloid.html; see also http:// mathworld.wolfram.com/Epicycloidhtil For /Hypocycloid.html; see also http:// mathworld.wolfram.com/Epicycloid.html.
For more on the properties of epicycloids and hypocycloids, see Maor, Trigonometric Delights,
chapter 7. ©

Steiner's Porism

卫The first half of the 19th century saw a revival of interest in clas
sical Euclidean geometry in which figures are constructed with straight-edge and compass and theo rems are proved from a given set of ax oms. This "synthetic," or "pure," ge metry had by and large been thrown by the wayside with the invention of analytic geometry by Pierre de Fermat and René Descartes in the first half o the 17th century.
Analytic geometry is based on the dea that every geometric problem ated into the languape ple, be tran set of equations, whose solution (or solutions) could then be translated back into geometry. This unification of algebra and geometry reached its hig point with the invention of the difle ential and integral calculus by Newto and Leibniz between 1666 and 1676 it has remained one of the chief tool wwed interest in synthetic geometry came, therefore, as a fresh breath of air a subject that had by that time been considered out of fashion.
One of the chief protagonists in his revival was the Swiss geomete Jacob Steiner (1796-1863). Steiner did not learn how to read and write untir he was 14, but after studying unde he famous Swiss educator Heinrich Pestalozzi, he became completely dedibeautiful theorems we bring here one hat became known as Steiner's porism (more on that odd name in a moment) Steiner considered the followin problem: Given two nonconcentric cirles, one lying entirely inside the othe onstruct a series of secondary circle, each touching the circle preceding it in he sequence as well as the two origi nal circles (see figure at lower right). Wil his chain close upon itself, so that the he first? Steiner in 1826 , proved that i his happens for any particular choice of the initial circle of the chain, it will happen for every choice
In view of the seeming absence of symmetry in the configuration, this re sult is rather unexpected. Steiner de vised a clever way of exposing hidden ymmetry by inverting the two origina circles into a pair of concentric circles. As result, the chain of secondary circle

hese nine examples of Steiner chains each consist of one large circle containing six other circles, some overlapping, of various sizes.
(now inverted) will occupy the space between the (inverted) given circles evenly, like the metal balls between the inner and outer rings of a ball-bearing wheel. These can be move round in a cyclic manner without affecting the chain.
But that's not all: It turns out the

Jacob Steiner's study of nonconcentric circles gave rise to the mathematical proposition named after him.
red), and the points of contact of adjacent circles lie on yet another circle (marked in green)
The images at left illustrate nine Steiner chains, each comprising five ternately colored in blue and orange) and an inner black circle. The cenral panel shows this chain in its nverted, symmetric "ball-bearing" onfiguration. As happens occasionally, a theorem that has been known in the West for many years turned ut to have already been discovered arlier in the East. In this case, a Japaen (1732-1798), discovered Steiner's orism in 1784, almost half a century before Steiner. An old Japanese tradiion, going back to the 17th century, was to write a geometric problem on a wooden tablet, called sangaku, and hang it in a Buddhist temple or Shino shrine for visitors to see. A fine example of Steiner's-or Chokuyen'schain appeared on a sangaku at the Ushijima Chomeiji temple in Tokyo. ately, but an image of it appeared a book published about the same me as Steiner's discovery.
It is somewhat of a mystery why his theorem became known as Steinr's porism. You will not find the word porism in your usual college dictionary, but the online Oxford English Dictionary defines it as follows: "In Euclidean geometry: a proposition arising during the investigation of some other propositions by immediate deduction from it. Be that as it may, the theorem again reminds us surprises within it.

Notes
Steiner chains enjoy many additional properties. See http:// en.wikipedia.org / wiki//Steiner_chain. For a proof of Steiner's See Hidetoshi and Rothman, Sacred Mathematics: Japanese Temple Geometry, p. 292. @

Excerpted from Beautiful Geometry by Eli Maor and Eugen Jost. Copyright © 2014 by Princeton University Press. Reprinted by per Pythagorean Theorem: A 4,000-Year History, among other books (all Princeton University Press) and has taught the history of mathematics at Loyola University Chicago. Eugen Jost is a Swiss artist whose work is strongly influenced by mathematics.

For relevant web links, consult this issue of American Scientist Online:
https:/ / www.americanscientist.org/magazine /issues/2014/ march-april

Nightstand

Stats and Fiction

an adventure in statistics: The Reality Enigma. Andy Field. Illustrated by James Iles. 746 pp. SAGE Publications,

n graduate school, I searched and earched for a good applied sta tistics textbook-one that not only explained analyses and how they work but also covered how to prepare and check one's data, write the proLike most ecologists, I needed to learn a vast array of analytical techniques I ended up cobbling together what needed using several books. A Prime for Ecological Statistics, by Nicholas J Gotelli and Aaron M. Ellison, was fin for checking the basics. For multivari ate analyses, I referred to Analysis of Ecological Communities, by Bruce Mc Cune and James B. Grace, and Using Multivariate Statistics, by Barbara G the course of those doctoral research years, as well as when I began teach ing undergraduate biology, I picked up a variety of statistics textbooks and put most of them right back down. Further complicating matters, re searchers who rely on statistical analy sis of their data must typically be fa miliar with some sort of programming code to run the numbers. Mastering he output can be big hurdles for early career scientists-especially as the number of analyses they may need to have in their toolboxes has proliferated During my last year of dissertation re search, I read about the code language or the free program R using Michae . Crawley's The R Book. This freeware had vast online help networks that en abled me to find what I needed fairly quickly and cheaply; it made much nicdid; and it offered me the ability to do analyses that other statistical software packages couldn't easily perform

Now, many years later, I have at last encountered a book that provides solid, innovative statistics instruction fair to say that it does so like no other Andy Field's An Adventure in Statistics: The Reality Enigma-an introductory statistics educational text embedded in a science fiction story with graphicnovel artwork-has caught my attention and kept it. If only Id had this book back in grad schoo
Field, a professor of child psychopathology at the University of Sussex, is covering Statistics Using SPSS [Statistical Package for the Social Sciences], which has gone through three editions, selling hundreds of thousands of copies. When Field asked his publisher, SAGE Publications, for permission to write a "statistics for dummies" book as part of a series put out by a rival publisher, he was told that if he would write the book for SAGE instead, he would be given complete authorial controlAdventure in Statistics was the result. Field has created (if you'll forgive the pun) a truly novel textbook: one driven by a fictional plot, full of quirky science fiction tropes, in which readers accom-
pany the protagonist on a quest to learn tatistics. Like a standard textbook, it is rganized into a logical sequence of intions and activities at the end of each But unlike most textbooks, the fictiona plot guides the reader throughout and accompanied by comic-book-style illustrations. Field also freely blends elements from the thriller and horro genres into the tale as his protagonis races to locate a missing person and faces a zombie apocalypse. The book s unlike anything else out there, but of-its peculiarity
Field uses the book's prologue to set the scene, introducing readers to a dystopian future in which the invention of a "reality prism" has made it possible for anyone wearing the device oo see truth objectively and to separate ut subjective experience. This invenion, developed a few decades befor he story's action begins, has brought mout a revoluton throngh the dia spin but also religion, art, music, creativity, and people's sense of purpose. When a new World Governance Agency embeds in its citizens Wi-Fienabled microchips that record what

Having caught a fleeting glimpse ofnis missinglover, Zach (left) fears she has abandoned him for a life immersed in science. In the second panel, Milton (the cat) makes a call on his Proteus (a de The reader is leff to wonder who is on the other end of that call. From An Adventure in Statistics.
a person sees, thinks, and hears in re time, a schism emerges: On one sid der to join a virtual hive mind; on the other are those who refuse them, preferring instead a steampunk-like love of anachronism. In Field's hands, the reality prism serves as more than an interesting premise. He uses the invention to cheekily make points about the difficulty of defining objectivity, adding depth and dimension to a question at he root of the practice of statistics Taking this destabilized world as two characters who have been romantic partners for 10 years and share an apartment: Zach, the lead singer in a metal band called The Reality Enigma, who follows his gut feelings, and Alice, a scientist who bases her decisions on evidence. Zach is in awe of Alice's scientific prowess, although he doesn't always understand her work. When Alice disappears, with all records of decides that in order to understand her research and why she might have disappeared, he has to learn science and statistics-even though he hates math and admits that it made him feel "inferior and frustrated" in school. His quest brings him into contact with a passel of wacky characters, including Milton-a talking ginger cat that keeps texting him statistics hints and is, incidentally, a scientist trapped in a cat's music who has a big crush on him and who also happens to work at a mysterious scientific research institution IIG:SAW, which was mentioned multiple times in the data files that Alice left behind on the day she disappeared.
As Zach progresses through his quest, he receives a comprehensive introduction to statistics. Like many introductory statistics texts, this one starts and the distribution of data, and it ends with a common method for comparing two or more means-analysis of variance, including factorial and repeatedmeasures designs. The text does not give a comprehensive overview of nonlinear or multivariate models. It covers the basics, however, and provides guidelines for avoiding pitfalls commonly encountered by novice researchers, both of which it does considerably examined. Each chapter ends with set of activities and questions (labeled

ROB NUTCOT'S ABOMINATION

DR. TUFF'S VERSION

In a section on the art of presenting data, Field provides several illustrations that contrast a terrible graph or chart (left) with a more elegant version (right). The flawed examples are attributed to Ro tributed to a Dr. Sisyphus Tuff, described as "the world expert on displaying data"; his last name is clearly meant to evoke pioneer of data visualization Edward Tufte. From An Adventure in Statistics.
puzzles) that help the reader review the concepts covered. Unlike the stan dard textbook examples and exercises, however, these consider topics such as zombie rehabilitation, the psychology of cheating on one's partner, and the busiband with merchandise
In addition, data files and R scripts for some of the problems are available. I like that Field offers these, as well as an ample number of images that show effective data visualizations. The examples of code and output in R for particular analyses are an essential part of an applied statistics textbook if one is using it to teach oneself and is applying the lessons to one's own lectures by Field on his YouTube page (http://bit.ly /2kWEhfv), along with tutorials for both his earlier statistics textbook and this one
Field's clear and fun explanations demonstrate that he is an experienced and conscientious teacher. Through Zach's first-person narration, Field shows that the protagonist's biggest math not any inability to do statistics and understand it. And Field gives Zach-and readers-reassurance when the topic is especially difficult. For example, when Milton explains degrees of freedom, Zach responds, That made no sense whatsoever." Milton answers, "Worry not: Nobody understands degrees of freedom." Presenting statistics instruction in a narrative format enables Field to create an emotional connection with readteachers, do not

As an experienced educator, Field has a good sense of where a studen might get held up, and he makes sure to cover such topics repeatedly to emphasize certain points. But he maintain dents and their tendency not to listen well to their instructor. At one point Zach gets confused about why a tech nique for repelling zombies doesn vork, even though data supporting the echnique are available. He asks Milton, Why would you have a model that fits well but doesn't turn out to be much use in the real world? Field's descrip tion of Milton's reaction to this remark depicts teacherly exasperation: "Mil of admiration and suicidal ideation. spent a great deal of time telling you about sources of bias that can influence the linear model. Must you subject m oo the utter tedium of explaining all of hat again?"' Then Milton proceeds to give Zach a quick overview of the main points already made about bias. Field clearly wants to emphasize the impor tance of understanding bias in linear nodel staistics, hay fully seize those pportunity to play
eaders in need of a recap.
This failure to repel zombies is not bscure the truth on which statistics truggle to trust All the character many discover with statistics-through poor choice of analysis, failure of the data to conform to assumptions, misapprehension of he data's structure or outliers, or the ran In this way Field taches tha tatistics is a tool that can be used not
ust to solve problems and compre hend complex patterns, but also to deceive-or to confirm biases. Often his subject is not addressed so overtly in which it might court controversy or complicate homework assignments The fictionalized data avoid thes downsides while communicating im portant cautionary notes.
tatics tor up for Zact He is incredibly hard of the book

The mythology that Field builds shows that he values the importance of art and emotion as a driver for one's use of statistics.
ironic, catty way, but when Zach loses confidence or when others attack his back Most of the time, Milton displays quirky and brusque sense of humor For example, when a chimera threat ens Zach as he fumbles trying to interpret some data, Milton bristles, "Look lizard... . Three weeks ago this ape thought that kurtosis was a dental hygiene problem; all things considered we are moving swiftly." Later, Milto even congratulates Zach for sticking with it, giving him one of the only whole book: "You are the best student I've ever had. I have taught many bril liant scientists, but they are naturals . You are different: You find this hard people have told you that you can't do it, but ... you've never given up.
Field's world-building and charac ter development in the story animate the often contentious matter of at tempting to separate objectivity from from relativism, logic from intuition and rational thought from emotio After all, Milton advises against dichotomizing continuous variables saying it is "rarely sensible." Throug depicting his characters' struggle Field shows that both sides of each of these dichotomies are necessary
for solving problems well-and that for solving problems well-and tha when the opposing sides are at odds problems may not be solved well and can become more polarizing. Field he has Sister Price, a druidic figure who represents a group called the Doctrine of Chance, explain the drawbacks of null-hypothesis significance
testing (NHST): "The recipe-book nature of NHST encourages people to think in this all-or-nothing way. The [for p-values] can mislead scientists." Indeed, this pitfall has led to the current debate among scientists over reproducibility and fishing for p-value below the threshold for significance. Field drives this point home later in the explanation, making it clear that is more objective and lype of analysis

The fictional story exists in service of
 lessons need to go next. Although on its own the tale would not garner praise from literary critics, it succeeds in mak ing a normally dry read into one that s fun, emotive, and even suspenseful Field uses fiction to talk about contentious topics in science and statistics in also uses the story to show that behind every statistical analysis is a plot with characters, each of whom has his or her own worldview, ethics, desires, and emotions. In this way, the book stands out as being especially instructive bout the application and interpreta ion of statistics in the messy real world in contrast to the many textbooks tha show only the application of statistics in an idealized world. Sometimes fiction is the best vehicle for showing us ou separate facts from fictions.

Katie L. Burke is digital features editor of Amerian Scientist. She received her PhD in biolog from the University of Virginia in 2011. She blog boout ecology at the Understory.
[This review was originally published in the March-April 2017 issue.]

Information,
 Reimagined

A MIND AT PLAY: How Claude Shanno nvented the Information Age. Jimm Soni and Rob Goodman. 366 pp. Simo and Schuster, 2017. \$27.

AMind at Play, Jimmy Soni and Rob Goodman's new biogra
phy of Claude Shannon, the - phy of Claude Shannon, th father of information theory, introather of information theory, intro-
duces us to its subject with an anec dote: After falling out of sight during the 1960s, Shannon made an unan nounced appearance in 1985 at the In ternational Information Theory Sym posium in Brighton, England. The shy, white-haired celebrity was eventually spotted and soon afterward mobbed by autograph-seeking fans. Persuadcome to the podium at the evenin banquet, the reluctant Shannon had to endure hearing himself introduced as "one of the greatest scientific minds

Claude Shannon was an avid unicyclist who enjoyed coming up with eccentric designs to build, including one with an off-center hub that caused the rider to bob up and down while pedaling. Whether Shannon was redesigning data transmission or unicycles, the authors note hat his work displayed a "mastery
ssential core." From A Mind at Play.
of our time." When the cheering and pplause finally subsided, Shanno could only say, "This is-ridiculous." He reached into his pocket, produced hree balls, and began to juggle.
The chairman later described the bizarre scene: "It was as if Newton had showed up at a physics confer sce. At we know could not jugole) his comparison expresses an admira tion for Shannon that has only grown stronger through the years. It reached dramatic height last year, the centennial of Shannon's birth. Celebratory confer ences were held around the world. A Google doodle marked the day, April 30, 1916, when Claude Elwood Shan non was born in Petoskey, Michigan One wonders what Sha
The fugse of all the fus
Tand land inale especially in laying theoretical ground work for encoding messages for trans
mission and by determining how digital circuits could be designedlink him inextricably to today's information age. And in the wake of Goodman, a writer and political sci-

During World War II he worked on a variety of projects involving elecShannon's enduring fame rests main ly on his landmark paper, "A Math ematical Theory of Communication," published in 1948 in the Bell System Technical Journal and republished by University of Illinois Press in 1963. In the short paper Shannon considered the problem of transmitting digital data (that is, sequences of zeroes and believed that in order to increase the rate at which information can be transmitted, one should simply increas the power of the signal source. Building on earlier work by Harry Nyquist and Ralph Hartley, two colleagues at Bell Labs, Shannon showed that in fac there is a maximum rate of transmis sion over any channel. Assuming that the channel interference is caused by computable formula for the maximum rate in terms of bandwidth and signal to-noise ratio. Its calculated rate is a sharp maximum, meaning that it can be approached as closely as we desire but it can never be exceeded
Any transmission is vulnerable to error-random zeroes received as hat if the transmission rate is less thed the maximum, then there exist ways to end the data (by "coding" the transmis sion) so that the probability of error can be made arbitrarily small. The work of finding such codes, however, was left to others who took up the challenge. Today, data compression algorithms that rely on Shannon's theorems are used for an array of digital tasks, from recording music to sending pictures from Mars.
Shannon's appropriation of the term "entropy" inspired a productive debate about deep connections between information and thermodynamics. Mathematicians in probability and dynamical systems found that it could be extended and used effectively in their own work.
entist, have handily supplied curious readers with more of the modest mathematician's story.
hose between 1940 and the mid 1950s, were spent in Manhattan at Bell Telephone Laboratories (which later moved to Murray Hill, New Jersey).

An abstract interpretation of the word information lies at the heart of Shannon's theory. Gone are seman and ones satisfying a particular list of rules (for example, "zero cannot be followed immediately by zero") could be acceptable. English words can be
ommunicated in this way by assign to individual letters (including an additional "letter" for a space).
As Shannon observed, our language has a certain amount of redundancy built in. For example, you can read this sentence, but, as Soni and Goodma elay, Shannon observed that "MST Pr s well-a condition familiar to one who sends text messages. Shan non gave a definition for the amount of information transmitted in a message He then defined the rate of information ransmitted, which he called entropy. For example, if we restrict ourselves
own work. It is not difficult to imagine that von Neumann, one of the greatest mathematical minds of the 20th century, anticipate
developments.
It is a temptation to look back at the early life of a genius and search for signs that promise future greatness. In the case of Claude Shannon, however,
we find few indicators. We read that we find few indicators. We read that giving story-writing contest and that giving story-writing contest and that He loved to build and fix things, especially radios, as did many youngsters in the 1920s. He found mathematics easy and enjoyed its competitive as-

A prolific tinkerer with a singular sense of humor, Shannon invented bizarre devices, including a calculator that operates with Roman numerals.
to messages of zeroes and ones, then a source that can produce only ones would have zero entropy, whereas a source that produces zeroes and ones with the flip of a coin would have the largest possible entropy
Soni and Goodman relate a famous story about Shannon's choice of the John von Neumann noted the un canny similarity between Shannon's notion and one that had been used in thermodynamics for decades. "You should call it entropy, for two rea sons," von Neumann advised. "In the first place your uncertainty functio has been used in statistical mechanic under that name, so it already has a name. In the second place, and more tropy really is so in a debate you wil always have the advantage."
"Almost certainly this co.
never happened," insist the author echoing doubts raised elsewhere However, Shannon himself related the story, exactly as above, in a 1971 interview with the engineer Myron Tribus. Regardless of whether the sto ry is true, Shannon's appropriation of he term "entropy" inspired a produc between information and thermody namics. Mathematicians who work in the areas of probability and dynamical ystems then heard about Shannon definition and found that it could be extended and used effectively in their
pects, but no evidence is offered of exceptional mathematical ability. What little is revealed about Shannon's college career also fails to pre dict eminence. He attended the University of Michigan, where he earned dual bachelor degrees in mathematics and electrical engineering. He was ma Xi honor societies. He published two solutions to questions proposed in the American Mathematical Month$l y$, an expository journal intended for both students and faculty. These accomplishments are laudable but certainly not rare. Unfortunately, we don't learn who Shannon's teachers were or what mathematics and science courses he took at the University have helped the reader anticipate the first blaze of Shannon's genius, his master's thesis, completed in 1937 Serendipity is a standard ingredient of notable careers, and for Shannon it was added during his master's program, in the spring of 1936, when he noticed a typed card stuck to a bulletin board. It advertised a graduate assistantship at the Massachusetts Institute of Technology with the duty of running puter designed to solve differential and integral equations. Such analog computers had been around since 1876 , but this one also had some digital components and was the first capable of general applications. Eventually it would
olve differential equations with 18 in dependent variables. Its inventors wer farold Hazen and Vannevar Bush. "I Shannon recalled. "That was one of the luckiest things of my life."
Vannevar Bush was a tall figure in American science. He had joined MIT's electrical engineering depart he founded a military supplier now called the Raytheon Company. In 1941, Bush would help convince Presi dent Roosevelt to begin building an atomic bomb, and he would take eading role in its development. A MIT Bush recognized Shannon's bril liance and took a serious interest in his areer, guiding him through graduat chool and on to Bell Labs
Shannon's thesis, A Symbolic Analysis of Relay and Switching Circuits, is regardter's theses ever written. Completed in 1937, it used century-old ideas of th British logician George Boole to sim plify the arrangement of relays comprising electrical networks. Elegant and practical, Shannon's system provided asis for modern digital circuit design Most mathematicians who teach appli cations of Boolean algebra to electrica iccuits in courses of discrete mathemat ideas in Shannon's thesis. More than 50 years later, Shannon downplayed the significance of his discovery. "It jus happened no one else was familiar with both fields at the same time," he told an interviewer, adding, "I ve always loved hat word. Boolean."
Bush was not only a good judge of intellect, he was also a shrewd ob server of temperament. He might have Shannon had lost his father in his sophomore year, and for some reaso stopped speaking to his mother shortly fterward. Bush encouraged Shannon oo spend time at Cold Springs Harbo Laboratory and apply Boolean algebra to Mendelian genetics. He would be supervised by Barbara Stoddard Burks a sympathetic psychologist interested in the genetics of genius and keenly interested in questions of nature versu t Cold Springs Harbor had more than 25 years of data for Shannon to con template. In less than one year, Shan non had learned enough of genetics to complete his Ph.D. dissertation, An Al gebra for Theoretical Genetics, a masterful
but overly theoretical work that would have little to offer geneticists. The experience confirmed the opinion that genius who could acquire knowled a genius who could acquire knowledge create significant mathematics. However, Shannon had little regard for the work. He fled the field and never bothyears later he remarked "I had a good years acting as a geneticist for a couple of years." of years.
After receiving his doctorate Shannon spent a summer at Bell Labs and a year at the Institute for Advanced
Study in Princeton, and he finally found full-time employment back Bell Labs.
Shannon was fortunate to work at Bell Labs during a period when re-
search and development in the United States was generously funded. His brilliance entitled him to a freedom that seems impossible today, in a time of international competition and demands by shareholders for fast profits. With characteristic modesty, Shannon once admitted to a supervisor, It always seemed to me that the freedom I took [at the Labs] was something of a special favor
Lured by a change of scene and the relative security of academia, Shan1958. He retired in 1978. The good luck that had followed him for so long finally departed in the early 1980s as Shannon began displaying signs of Alzheimer's disease. He died from the illness in 2001.
A Mind at Play is a loving biography recounted by two admirers of Claude Shannon. It is especially good at relat ing the many stories to the growing fascination with its hero A prolific tinkerer with a singular sense of humor, Shannon invent ed bizarre and amusing devices, many of which are described. They included a motorized pogo stick, a rocket-pow ered frisbee disk, a juggling machine a calculator that operates with Roman numerals, and a relay-controlled ro botic mouse that could solve a maze and keep track of its solution. An known as the "Ultimate Machine" fascinated science-fiction writer Arthur C. Clarke during a visit to Bell Labs. In his 1958 book Voice across the Sea, Clarke offered a description of the machine's workings: "When you throw
the switch, there is an angry, purposeful buzzing. The lid slowly rises, and from beneath it emerges a hand. The off, and retreats into the box. With the finality of a closing coffin, the lid snaps shut, the buzzing ceases, and peace reigns once more."
A Mind at Play is somewhat less successful when mathematics appears. Shannon's "Theorem on Color Coding" and Hartley's formula for information are misstated. The authors do an admirable job of describing Shannon's entropy for a coin toss, but they stop short of explaining it for a more general information source. Readers wishing to learn details of Shannon's work would do better to go to Shannon's papers, which are well written More distressing than
More distressing than minor techof the criticism that followed publiof the criticism that followed publi-
cation of The Mathematical Theory of Communication. After citing a sharp comment by probabilist Joseph Doob in a review, the authors imagine that pure mathematicians formed a cabal to condemn Shannon's applied work. Certainly Shannon's definitions and proofs were not always complete theorem about the optimum use of noisy channels by coding, discussed previously, was finally proved by Amiel Feinstein in 1954, and today it is known as the Shannon-Feinstein theo rem.) Nevertheless, Shannon's work was and continues to be used and admired by the mathematical community. Mathematical Reviews, in which Doob published his odd remark, contains nearly 2,000 reviews that refer to Shannon did m .
e new field of information theory He also demonstrated what can be ac complished by combining passionate inquiry with a fondness for levity. A Mind at Play is an enjoyable biography that unites us with the singular spiri of Claude Shannon.

Daniel S. Silver is an emeritus professor of math ematics at the University of South Alabama. His
ressearch explores the relation between knots research explores the relation between knots and
dynamical systems, as well a s the history ofscience and the psychology of invention.

Ihis review was originally published in the January-February 2018 issue.]

Math with Attitude

MATH WITH BAD DRAWINGS: Illu minating the Ideas That Shape Our Reality. Ben Orlin. 367 pp. Black Dog an Leventhal, 2018. \$27.99.

Math books meant for a broad audience are often tinged who lost their faith in numbers some where between flash-card drills and the quadratic formula. Real mathemat ics isn't like that, the books assure us, Real mathematics is filled with excit ing adventures: turning a sphere insid ut without piercing the surface, til ing an infinite bathroom with a pattern squiggly they fill all of space, strolling round a Möbius band and returnin as your own mirror image.
I have read and thoroughly enioyed many books in this genre, and I'v even written a couple of them myself However, I've never really believed hey are likely to convert anyon who's not already singing in the math matical choir. The sad fact is, outsid he circle of math enthusiasts, people eversion and aperiodic tiling.
Ben Orlin's Math with Bad Drawins
may have a better chance of reaching ost souls. Orlin has an advantage ove vory tower types like me. As a K-1 lassroom teacher, he comes face-to face with skeptical youth every day When he asked a group of ninth grad ers why they study math, they settled on the answer, "to prove to college and employers that we are smart

The students weren't wrong. Eduation has a competitive zero-sum spect, in which math function as a sorting mechanism. What ailing to show them-was math' deeper function
"Deeper function" is a revealing phrase. If I were writing that sentence meaning" or perhaps "math's inne beauty." But Orlin is listening to his tudents, and they are telling him, Keep your feet on the ground." In hese pages there are no mind-bog gling excursions into N -dimensional

realistic landscapes, or someone who files their own taxes. Fable tellers and math makers are more like cartoonists. By exaggerating the rest, they help explain why our world is the way it is.
Orlin has a third secret ingredient but it's invisible; it's something that's "Do dhe math" and "show your work" are phrases that never turn up in these pages. There are no homework probpages. There are no homework prob-
lems, no exercises for the reader, not lems, no exercises for the reader, not
even worked examples. The focus is on concepts, not algorithms or formulas or equations. Orlin occasionally gives the result of a numerical calculation, but he doesn't dwell on where the answer came from or explain how one might tackle similar problems. This mode of discourse would not be at all unusual but it's a radical departure in mathematics, where learning by doing is a way of life, and problem-solving is both a pastime and a rite of passage.
I was a few chapters into the book before I became fully conscious of this curious absence. My first reaction was "No! Wait! You can't do that. You can't write a math book with no math in it."
But why not? Authors in other disciBut why not? Authors in other disciA book on music doesn't have to teach you how to play the guitar or compose you how to play the guitar or compose about food are full of recipes. Why should reading mathematics always be a roll-up-your-sleeves participatory pro cess? As Orlin demonstrates, it's entirely possible to say interesting things about mathematics without showing people how to do mathematics. And this more discursive approach may help bring the gospel to an audience that w
turned away by scary notation.
If I haven't quite convinced you of the wisdom of mathless math writing, that's because I haven't quite convinced myself either. After all, mathematical notation has a purpose: It clearly expresses ideas that would be hard to communicate without it. Consider a passage in the introduction to the section on probability. After noting that the outcome of a single coin toss is 50/50, Orlin writes

But if you could flip a trillion coins, you'd find yourself proaching a different world alto-
ether: a well-groomed land of ong-term averages. Here, half of all coins land on heads ... and one-in-a-million events happen a millionth of the time, give or take.

These statements convey a deep ruth: that random events in large enough numbers converge toward their average or expected behavior. Neverheless, I wory that some reac intur about that experiment with a trillion coins. In particular, what is the prob ability of seeing exactly equal number of heads and tails? The phrase "half of all coins land on heads" might be take to imply that the probability of this outcome grows larger as the number of coins increases, and that heads = tail would become a certainty with infinite ly many coins. In fact, the probability of in a trillion coin flips is less than one in million, and as the number of flips goes to infinity, the probability of an equal division wilts away to zero.
My point is not that Orlin's statement about long-term averages is incorrect; at worst it's slightly imprecise or incomplete. My point is that full understanding of a mathematical fact is hard to attain without doing some mathematics. Stands to reason, no?

But then I see one of Orlin's sleepyeyed stick figures demanding, "Okay Allow me to sth." I'll give it a try. problem: the probability of getting equal numbers of heads and tails when flipping 100 coins rather than a trillion. The number of possible head-tail sequences in 100 coin flips is 2^{100}. How many of those sequences have exactly $100!$ ($50!\times 50!$) where the exclama tion point denotes the factorial function: $100!=100 \times 99 \times 98 \times \ldots \times 3 \times 2 \times 1$. Stacking up all those multiplications produces some very large numbers, but with computer assistance it's not hard to calculate them. The probability we're seeking is the number of 50 -head sequences divided by the to numbe of sequences; it's about 0.08
To be thorough I would have to exand why you should believe they give the right answer, but I'm not going to bother, because the formulas are use less for the full-scale computation anyway. The number of possible outcomes when you flip a trillion coins is 2 raised to the trillionth power, which is a number with too many bits to fit in my computer's memory. To complete the computation I must resort to shortcuts
or stratagems, such as working with
ogarithms of factorials. With some al gebraic hocus-pocus, the formula for the probability of equal heads and tails can be reduced to a remarkably simple approximation: $1 / \sqrt{ } \pi n / 2$, where n is $n=1$ trillion, this works out to 8×10^{-7}. The challenge, of course, is explaining the hocus-pocus. Perhaps I could do so in terms the stick figure would under tand, but it would take at least a fe paragraphs, and I'm sure those droopy Euclid supposedly declared, "There is no royal road to geometry." He was scolding an overprivileged pupil who was tired of ruts and potholes and wanted a well-paved route to the sum mit of knowledge. Orlin hasn't built the royal road, but he's offering aerial ours of the mountainside that are well worth taking. The details may be hard scenery is great I look forward to the sequel although I am disappointed to learn it will not be titled More Math with Worse Drawings.

Brian Hayes is a former editor and columnist for American Scientist. His most recent book is Foo proof, and Other Mathematical Meditation

This review was originally published in the July-August 2019 issue.]

What Our Readers Are Saying

6

look to the articles in American Scientist to educate me about things I don't know about...my all-time favorite was the article that introduced me o plate tectonics...it was a whole new way of seeing the Earth.

60

You make most anything very interesting

American Scientist is one of the three major publications I read.

Henry Petroski's articles are the highlight of each ssue. He is a fascinating writer, witty and informative. I also find the book reviews well done and informative...It's a great magazine, one of the best to which I subscribe.

[^0]: Erik Demaine is an associate professor in computer science at the Massachusetts Institute of Technology. Address: MIT CSALL, 32 Vassar St., Cambridge MA 02139. Internet: http:/lerikdemaine.org/

[^1]: Henry Petroski is the Aleksandar S. Vesic Professor of Civil Engineering and a professor of history at Duke University. His most recent book is The Road Taken.
 The History and Future of America's InfrastrucThe History and Future of America's Infrastruc
 ture. Address: Box 9028 , Durham, NC 27708 .

